
CSCI 3155: Lab Assignment 3

Fall 2016
Checkpoint due Saturday, September 24, 2016

Assignment due Saturday, October 1, 2016

Learning Goals. The primary learning goals of this lab are to understand the following:

• how to read a formal specification of a language semantics;

• how dynamic scoping arises;

• the distinction between a big-step and a small-step operational semantics;

• evaluation order; and

• substitution and program transformation;

PL Ideas Semantics: evaluation order. Operational semantics. Substitution and program trans-
formation.

FP Skills Iteration. Introduction to higher-order functions.

Concretely, we will extend JAVASCRIPTY with recursive functions and implement two inter-
preters. The first will be a big-step interpreter that is an extension of Lab 2 but implements
dynamic scoping “by accident.” The second will be a small-step interpreter that exposes evalu-
ation order by iterating a single-step transition relation and implements static scoping by sub-
stitution.

General Guidelines. During recitation find a partner for this lab assignment (should be dif-
ferent for every lab assignment). You will work on this assignment closely with your partner.
However, note that each student needs to submit and are individually responsible for complet-
ing the assignment.

You are welcome to talk about these questions beyond your teams. However, we ask that
you code in pairs. See the collaboration policy for details, including the following:

Bottom line, feel free to use resources that are available to you as long as the use is rea-
sonable and you cite them in your submission. However, copying answers directly or
indirectly from solution manuals, web pages, or your peers is certainly unreasonable.

Also, recall the evaluation guideline from the course syllabus.

1

Both your ideas and also the clarity with which they are expressed matter—both in
your English prose and your code!

We will consider the following criteria in our grading:

• How well does your submission answer the questions? For example, a common
mistake is to give an example when a question asks for an explanation. An
example may be useful in your explanation, but it should not take the place of
the explanation.

• How clear is your submission? If we cannot understand what you are trying
to say, then we cannot give you points for it. Try reading your answer aloud to
yourself or a friend; this technique is often a great way to identify holes in your
reasoning. For code, not every program that “works” deserves full credit. We
must be able to read and understand your intent. Make sure you state any pre-
conditions or invariants for your functions (either in comments, as assertions,
or as require clauses as appropriate).

Try to make your code as concise and clear as possible. Challenge yourself to find the most
crisp, concise way of expressing the intended computation. This may mean using ways of ex-
pression computation currently unfamiliar to you.

Finally, make sure that your file compiles and runs via sbt test. A program that does not
compile will not be graded—no interview will be conducted.

Submission Instructions. We are using Github for assignment distribution and submission.
You need to have a Github identity and must have your full name in your Github profile so that
we can associate you with your submissions.

You will be editing and submitting the the following files:

• src/main/scala/jsy/student/Lab3.scala with your solution to the coding exercises;

• src/test/scala/jsy/student/Lab3Spec.scala with your additional tests; and

• lab3-writeup.pdf or lab3-writeup.md for a pdf or a Markdown document that should
be pushed to the root directory of your repository with your response to the written ques-
tions (scanned, clearly legible handwritten write-ups are acceptable). You will not get
credit for write-ups in any other file format.

• lab3-yourteamname.jsy with a challenging test case for your JAVASCRIPTY interpreter.

You are also likely to edit src/main/scala/jsy/student/Lab3Worksheet.sc for any scratch
work.

Following good git practice, please make commits in small bits corresponding to completing
small conceptual parts and push often so that your progress is evident. We expect that you have
some familarity with git from prior courses. If not, please discuss with your classmates and the
course staff (e.g., via Piazza).

At any point, you may submit your Lab3.scala file to COG for auto-testing. You need to
submit to COG for the auto-testing part of your score, as well as to continue to the interview.

2

Sign-up for an interview slot for an evaluator. To fairly accommodate everyone, the inter-
view times are strict and will not be rescheduled. Missing an interview slot means missing the
interview evaluation component of your lab score. Please take advantage of your interview time
to maximize the feedback that you are able receive. Arrive at your interview ready to show your
team’s implementation and your written responses. Implementations that do not compile and
run will not be evaluated.

Finally, upload to the moodle exactly the files named above, that is,

• Lab3.scala

• Lab3Spec.scala

• lab3-writeup.pdf or lab3-writeup.md

• lab3-yourteamname.jsy

Getting Started. First, form a team of two and pick a team name. For our bookkeeping, please
prefix your team name with lab3- (e.g., lab3-anatomists).

You must work in teams of two, and you will form teams in lab section. If you miss lab
section on the day teams are formed, you need to find a partner on your own. If you really,
really cannot find a partner, then please contact the course staff (via Piazza).

Then, log into moodle and follow the Github Classroom link for setting up your Lab 3 repos-
itory with your team name. The first person will create the team, and the second person will
select the team name from the existing team names.

If you would like to look at the code before getting your own copy for submission, you may
go to https://github.com/csci3155/pppl-lab3.

Checkpoint. The checkpoint is to encourage you to start the coding portion of the assignment
early and it requires you to submit your partial solution on COG a week before the assignment
is due. You do not need to complete all coding a week early but we want you to start working on
it. This means that submitting the empty template that fails all tests is not sufficient. Failing to
submit to the checkpoint will prevent you from proceeding to the interview. However, as long
as you pass the checkpoint, this early score from the checkpoint will not affect your grade for
the assignment or your overall grade for the course.

Scala Practice. A suggested way to get familiar with Scala is to do some small lessons with
Scala Koans (http://www.scalakoans.org/). A useful one for Lab 3 is AboutOptions.

1. Feedback. Complete the survey on the linked from the moodle after completing this as-
signment. Any non-empty answer will receive full credit.

2. JavaScripty Interpreter: Tag Testing, Recursive Functions, and Dynamic Scoping.

We now have the formal tools to specify exactly how a JAVASCRIPTY program should behave.
Unless otherwise specified, we will continue to try to match JavaScript semantics as imple-
mented by Node.js/Google’s V8 JavaScript Engine. Thus, it is still useful to write little test

3

https://github.com/csci3155/pppl-lab3
http://www.scalakoans.org/

expressions e ::= x | n | b | str | undefined | uope1 | e1 bop e2

| e1 ? e2 : e3 | const x = e1; e2 | console.log(e1)
| p(x) => e1 | e1(e2) | typeerror

values v ::= n | b | undefined | str | p(x) => e1 | typeerror
unary operators uop ::= - | !
binary operators bop ::= , | + | - | * | / | === | !== | < | <= | > | >= | && | ||
variables x
numbers (doubles) n
booleans b ::= true | false
strings str
function names p ::= x | ε
value environments E ::= · | E [x 7→ v]

Figure 1: Abstract Syntax of JAVASCRIPTY

statements s ::= const x = e | e | { s1 } | ; | s1 s2

expressions e ::= ·· · | (e1)
|((((((

((const x = e1; e2

|����
��p(x) => e1 | x => e1 | x => blk | (x) => e1 | (x) => blk

| function p(x) blk
function body blocks blk ::= { s return e1 }

Figure 2: Concrete Syntax of JAVASCRIPTY

JavaScript programs and run it through Node.js to see how the test should behave. Find-
ing bugs in the JAVASCRIPTY specification with respect to JavaScript is certainly deserving of
extra credit.

In this lab, we extend JAVASCRIPTY with recursive functions. This language is very similar to
the LETREC language in Section 3.4 of Friedman and Wand.

For this question, we try to implement functions as an extension of Lab 2 in the most
straightforward way. What we will discover is that we have made a historical mistake and
have ended up with a form of dynamic scoping.

The syntax of JAVASCRIPTY for this lab is given in Figure 1. Note that the grammar specifies
the abstract syntax using notation borrowed from the concrete syntax. The new constructs
are highlighted. We have function expressions p(x) => e1 and function calls e1(e2).

In a function expression, the function name p can either be an identifier or empty. When
the identifier for the function name is present, it can be used for recursion. For simplicity,
all functions are one argument functions. Since functions are first-class values, we can get
multi-argument functions via currying.

We have also added a “marker” typeerror to the expression language. This marker is not part
of the source language but is used in our definition of the evaluation judgment form. We
discuss this in more detail further below.

As before, the concrete syntax accepted by the parser is slightly less flexible than the ab-
stract syntax in order to match the syntactic structure of JavaScript. For function expres-

4

case class Function(p: Option[String], x: String, e1: Expr) extends Expr
Function(p, x, e1) p(x) => e1

case class Call(e1: Expr, e2: Expr) extends Expr
Call(e1, e2) e1(e2)

Figure 3: Representing in Scala the abstract syntax of JAVASCRIPTY. After each case class or
case object, we show the correspondence between the representation and the concrete syntax.

sions, only the anonymous version is allowed using the arrow syntax (=>), which may op-
tionally have parentheses around the parameter and whose body may be an expression e
or a block blk. A function body block is surrounded by curly braces (i.e., { }) and consists of
a statement s for const bindings followed by a return with an expression e1.

The function keyword syntax may have a function name but whose body must be a block.

An abstract syntax tree representation is provided for you in ast.scala. We also provide a
parser and main driver for testing. The correspondence between the concrete syntax and
the abstract syntax representation is shown in Figure 3.

A big-step operational semantics of JAVASCRIPTY is given in Figure 4. This figure may be
one of the first times that you are reading a formal semantics of a programming language.
It may seem daunting at first, but it will be become easier with practice. This lab is such an
opportunity to practice.

A formal semantics enables us to describe the semantics of a programming language clearly
and concisely. The initial barrier is getting used to the meta-language of judgment forms
and inference rules. However, once you cross that barrier, you will see that we are telling
you exactly how to implement the interpreter—it will almost feel like cheating!

In Figure 4, we define the judgment form E ` e ⇓ v , which says informally, “In value en-
vironment E , expression e evaluates to value v .” This relation has three parameters: E , e,
and v . You can think of the other parts of the judgment as just punctuation. This judg-
ment form corresponds directly to the eval function that we are asked to implement (not
a coincidence). It similarly has three parts:

def eval(env: Env, e: Expr): Expr

It takes as input a value environment env (E) and an expression e (e) returns a value v .

It is very informative to compare your Scala code from Lab 2 with the inference rules that
define E ` e ⇓ v . One thing you should observe is that all of the rules are implemented,
except for EVALCALL, EVALCALLREC, and part of EVALEQUALITY. In essence, implementing
those rules is your task for this question.

In Lab 2, all expressions could be evaluated to something (because of conversions). With
functions, we encounter one of the very few run-time errors in JavaScript: trying to call
something that is not a function. In JavaScript and in JAVASCRIPTY, calling a non-function
raises a run-time error. In the formal semantics, we model this with evaluating to the
“marker” typeerror.

5

E ` e ⇓ v

EVALVAR

E ` x ⇓ E(x)

EVALVAL

E ` v ⇓ v

EVALNEG
E ` e1 ⇓ v1 n′ =− toNumber(v1)

E `−e1 ⇓ n′

EVALNOT
E ` e1 ⇓ v1 b′ =¬ toBoolean(v1)

E ` !e1 ⇓ b′

EVALSEQ
E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` e1 , e2 ⇓ v2

EVALPLUSNUMBER
E ` e1 ⇓ v1 E ` e2 ⇓ v2 n′ = toNumber(v1)+ toNumber(v2) v1 6= str1 v2 6= str2

E ` e1 + e2 ⇓ n′

EVALPLUSSTRING1
E ` e1 ⇓ str1 E ` e2 ⇓ v2 str′ = str1 + toString(v2)

E ` e1 + e2 ⇓ str′

EVALPLUSSTRING2
E ` e1 ⇓ v1 E ` e2 ⇓ str2 str′ = toString(v1)+ str2

E ` e1 + e2 ⇓ str′

EVALARITH
E ` e1 ⇓ v1 E ` e2 ⇓ v2 n′ = toNumber(v1) bop toNumber(v2) bop ∈ {−,∗,/}

E ` e1 bop e2 ⇓ n′

EVALINEQUALITYNUMBER1
E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 6= str1

b′ = toNumber(v1) bop toNumber(v2) bop ∈ {<,<=,>,>=}

E ` e1 bop e2 ⇓ b′

EVALINEQUALITYNUMBER2
E ` e1 ⇓ v1 E ` e2 ⇓ v2 v2 6= str2

b′ = toNumber(v1) bop toNumber(v2) bop ∈ {<,<=,>,>=}

E ` e1 bop e2 ⇓ b′

EVALINEQUALITYSTRING
E ` e1 ⇓ str1 E ` e2 ⇓ str2 b′ = str1 bop str2 bop ∈ {<,<=,>,>=}

E ` e1 bop e2 ⇓ b′

EVALEQUALITY
E ` e1 ⇓ v1 E ` e2 ⇓ v2

v1 6= p1(x1) => e1 v2 6= p1(x2) => e2 b′ = (v1 bop v2) bop ∈ {===, ! ==}

E ` e1 bop e2 ⇓ b′

EVALANDTRUE
E ` e1 ⇓ v1 true = toBoolean(v1) E ` e2 ⇓ v2

E ` e1 && e2 ⇓ v2

EVALANDFALSE
E ` e1 ⇓ v1 false = toBoolean(v1)

E ` e1 && e2 ⇓ v1

EVALORTRUE
E ` e1 ⇓ v1 true = toBoolean(v1)

E ` e1 || e2 ⇓ v1

EVALORFALSE
E ` e1 ⇓ v1 false = toBoolean(v1) E ` e2 ⇓ v2

E ` e1 || e2 ⇓ v2

EVALPRINT
E ` e1 ⇓ v1 v1 printed

E ` console.log(e1) ⇓ undefined

EVALIFTRUE
E ` e1 ⇓ v1 true = toBoolean(v1) E ` e2 ⇓ v2

E ` e1 ? e2 : e3 ⇓ v2

EVALIFFALSE
E ` e1 ⇓ v1 false = toBoolean(v1) E ` e3 ⇓ v3

E ` e1 ? e2 : e3 ⇓ v3

EVALCONST
E ` e1 ⇓ v1 E [x 7→ v1] ` e2 ⇓ v2

E ` const x = e1; e2 ⇓ v2

EVALCALL
E ` e1 ⇓ v1 v1 = (x) => e′ E ` e2 ⇓ v2 E [x 7→ v2] ` e′ ⇓ v ′

E ` e1(e2) ⇓ v ′

EVALCALLREC
E ` e1 ⇓ v1 v1 = x1(x2) => e′ E ` e2 ⇓ v2 E [x1 7→ v1][x2 7→ v2] ` e′ ⇓ v ′

E ` e1(e2) ⇓ v ′

Figure 4: Big-step operational semantics of JAVASCRIPTY (with dynamic scoping).

6

toNumber(n)
def= n

toNumber(true)
def= 1

toNumber(false)
def= 0

toNumber(undefined)
def= NaN

toNumber(str)
def= parse str

toNumber(p(x) => e1)
def= NaN

toBoolean(n)
def= false if n = 0 or n =NaN

toBoolean(n)
def= true otherwise

toBoolean(b)
def= b

toBoolean(undefined)
def= false

toBoolean(str)
def= false if str = ""

toBoolean(str)
def= true otherwise

toBoolean(p(x) => e1)
def= true

toString(n)
def= string of n

toString(true)
def= "true"

toString(false)
def= "false"

toString(undefined)
def= "undefined"

toString(str)
def= str

toString(p(x) => e1)
def= "function"

Figure 5: Conversion functions. We do not specify explicitly the parsing or string conversion of
numbers. The conversion of a function to a string deviates slightly from JavaScript where the
source code of the function is returned.

E ` e ⇓ v

EVALTYPEERROREQUALITY1
E ` e1 ⇓ v1 v1 = p1(x1) => e1 bop ∈ {===, ! ==}

E ` e1 bop e2 ⇓ typeerror

EVALTYPEERROREQUALITY2
E ` e2 ⇓ v2 v2 = p1(x1) => e1 bop ∈ {===, ! ==}

E ` e1 bop e2 ⇓ typeerror

EVALTYPEERRORCALL
v1 6= p(x) => e1

E ` v1(e2) ⇓ typeerror

EVALPROPAGATEUNARY
E ` e1 ⇓ typeerror

E ` uope1 ⇓ typeerror

EVALPROPAGATEBINARY1
E ` e1 ⇓ typeerror

E ` e1 bop e2 ⇓ typeerror

EVALPROPAGATEBINARY2
E ` e2 ⇓ typeerror

E ` e1 bop e2 ⇓ typeerror

EVALPROPAGATEPRINT
E ` e1 ⇓ typeerror

E ` console.log(e1) ⇓ typeerror

EVALPROPAGATEIF
E ` e1 ⇓ typeerror

E ` e1 ? e2 : e3 ⇓ typeerror

EVALPROPAGATECONST
E ` e1 ⇓ typeerror

E ` const x = e1; e2 ⇓ typeerror

EVALPROPAGATECALL1
E ` e1 ⇓ typeerror

E ` e1(e2) ⇓ typeerror

EVALPROPAGATECALL2
E ` e2 ⇓ typeerror

E ` e1(e2) ⇓ typeerror

Figure 6: Big-step operational semantics of JAVASCRIPTY: Dynamic type error rules.

7

Such a run-time error is known as a dynamic type error. Languages are called dynamically
typed when they allow all syntactically valid programs to run and check for type errors dur-
ing execution.

In our Scala implementation, we will not clutter our Expr type with a typeerror marker.
Instead, we will use a Scala exception DynamicTypeError:

case class DynamicTypeError(e: Expr) extends Exception

to signal this case. In other words, when your interpreter discovers a dynamic type error, it
should throw this exception using the following Scala code:

throw DynamicTypeError(e)

The argument should be the input expression to eval where the type error was detected.
One advantage of using a Scala exception for typeerror is that the marker does not need to
be propagated explicitly as in the inference rules in Figure 6. In particular, your interpreter
will implement the EVALTYPEERROR rules explicitly, but the EVALPROPAGATE rules are imple-
mented implicitly with Scala’s exception propagation semantics.

Note in rule EVALEQUALITY, we disallow equality and disequality checks (i.e., === and ! ==)
on function values. If either argument to a equality or disequality check is a function value,
then we consider this a dynamic type error. This choice is a departure from JavaScript se-
mantics.

(a) First, write some JAVASCRIPTY programs and execute them as JavaScript programs.
This step will inform how you will implement your interpreter and will serve as tests
for your interpreter.

Write-up: Give one test case that behaves differently under dynamic scoping versus
static scoping (and does not crash). Explain the test case and how they behave differ-
ently in your write-up.

(b) Then, implement

def eval(env: Env, e: Expr): Expr

that evaluates a JAVASCRIPTY expression e in a value environment env to a value ac-
cording to the evaluation judgment E ` e ⇓ v .

You will again want the following helper functions for converting values to numbers,
booleans, and strings:

def toNumber(v: Expr): Double
def toBoolean(v: Expr): Boolean
def toStr(v: Expr): String

We suggest the following step-by-step process:

1. Bring your Lab 2 implementation into Lab 3 and make sure your previous test
cases work as expected.

2. Extend your implementation with non-recursive functions. On function calls, you
need to extend the environment for the formal parameter but not for the function
itself. Do not worry yet about dynamic type errors.

8

3. Add support for checking for dynamic type errors.

4. Check that your interpreter, unfortunately, implements dynamic scoping instead
of static scoping.

5. Modify your implementation to support recursive functions.

3. JavaScripty Interpreter: Substitution and Evaluation Order.

In this question, we will do two things. First, we will remove environments and instead use
a language semantics based on substitution. This change will “fix” the scoping issue, and
we will end up with static, lexical scoping.

As an aside, substitution is not the only way to “fix” the scoping issue. Another way is to
represent function values as closures, which is a pair of the function with the environment
when it is defined. Substitution is a fairly simple way to get lexical scoping, but in practice,
it is rarely used because it is not the most efficient implementation.

The second thing that we do is move to implementing a small-step interpreter. A small-step
interpreter makes explicit the evaluation order of expressions. These two changes are or-
thogonal, that is, one could implement a big-step interpreter using substitution or a small-
step interpreter using environments.

(a) Implement

def iterate(e0: Expr)(next: (Expr, Int) => Option[Expr]): Expr

that iterates calling the callback next until next returns None. The callback next takes
an Expr to transform and the iteration number, which is initially (e0,0).

This function is used by the interface method iterateStep to repeatedly call step to
reduce a JAVASCRIPTY expression to a value.

(b) Implement

def substitute(e: Expr, v: Expr, x: String): Expr

that substitutes value v for all free occurrences of variable x in expression e. We advise
defining substitute by recursion on e. The cases to be careful about are ConstDecl

and Functionbecause these are the variable binding constructs. In particular, substitute
on expression

a; (const a = 4; a)

with value 3 for variable "a" should return

3; (const a = 4; a)

not

3; (const a = 4; 3)

This function is a helper for the step function, but you might want to implement all of
the cases of step that do not require substitute first.

(c) Implement

9

def step(e: Expr): Expr

that performs one-step of evaluation by rewriting the input expression e into a “one-
step reduced” expression. This one-step reduction should be implemented according
to the judgment form e −→ e ′ defined in Figures 7, 8, and 9. We write e[v/x] for sub-
stituting value v for all free occurrences of the variable x in expression e (i.e., a call to
substitute).

(d) Write-up: Explain whether the evaluation order is deterministic as specified by the
judgment form e −→ e ′.

It is informative to compare the small-step semantics used in this question and the big-step
semantics from the previous one. In particular, for all programs where dynamic scoping is
not an issue, your interpreters in this question and the previous should behave the same.
We have provided the functions evaluate and iterateStep that evaluate “top-level” ex-
pressions to a value using your interpreter implementations.

4. Evaluation Order.

Consider the small-step operational semantics for JAVASCRIPTY shown in Figures 7, 8, and 9.
What is the evaluation order for e1 + e2? Explain. How do we change the rules obtain the
opposite evaluation order?

5. Short-Circuit Evaluation. In this question, we will discuss some issues with short-circuit
evaluation.

(a) Concept. Give an example that illustrates the usefulness of short-circuit evaluation.
Explain your example.

(b) JAVASCRIPTY. Consider the small-step operational semantics for JAVASCRIPTY shown
in Figures 7, 8, and 9. Does e1 && e2 short circuit? Explain.

10

e −→ e ′

DONEG

n′ =− toNumber(v)

−v −→ n′

DONOT

b′ =¬ toBoolean(v)

! v −→ b′

DOSEQ

v1 , e2 −→ e2

DOPLUSNUMBER

n′ = toNumber(v1)+ toNumber(v2) v1 6= str1 v2 6= str2

v1 + v2 −→ n′

DOPLUSSTRING1

str′ = str1 + toString(v2)

str1 + v2 −→ str′

DOPLUSSTRING2

str′ = toString(v1)+ str2

v1 + str2 −→ str′

DOARITH

n′ = toNumber(v1) bop toNumber(v2) bop ∈ {−,∗,/}

v1 bop v2 −→ n′

DOINEQUALITYNUMBER1

b′ = toNumber(v1) bop toNumber(v2) bop ∈ {<,<=,>,>=} v1 6= str1

v1 bop v2 −→ b′

DOINEQUALITYNUMBER2

b′ = toNumber(v1) bop toNumber(v2) bop ∈ {<,<=,>,>=} v2 6= str2

v1 bop v2 −→ b′

DOINEQUALITYSTRING

b′ = str1 bop str2 bop ∈ {<,<=,>,>=}

str1 bop str2 −→ b′

DOEQUALITY

v1 6= p1(x1) => e1 v2 6= p1(x2) => e2 b′ = (v1 bop v2) bop ∈ {===, ! ==}

v1 bop v2 −→ b′

DOANDTRUE

true = toBoolean(v1)

v1 && e2 −→ e2

DOANDFALSE

false = toBoolean(v1)

v1 && e2 −→ v1

DOORTRUE

true = toBoolean(v1)

v1 || e2 −→ v1

DOORFALSE

false = toBoolean(v1)

v1 || e2 −→ e2

DOPRINT

v1 printed

console.log(v1) −→ undefined

DOIFTRUE

true = toBoolean(v1)

v1 ? e2 : e3 −→ e2

DOIFFALSE

false = toBoolean(v1)

v1 ? e2 : e3 −→ e3

DOCONST

const x = v1; e2 −→ e2[v1/x]

DOCALL

v1 = (x) => e1

v1(v2) −→ e1[v2/x]

DOCALLREC

v1 = x1(x2) => e1

v1(v2) −→ e1[v1/x1][v2/x2]

Figure 7: Small-step operational semantics of JAVASCRIPTY: DO rules.

11

e −→ e ′

SEARCHUNARY

e1 −→ e ′1
uope1 −→ uope ′1

SEARCHBINARY1

e1 −→ e ′1
e1 bop e2 −→ e ′1 bop e2

SEARCHBINARYARITH2

e2 −→ e ′2 bop ∈ {+,−,∗,/,<,<=,>,>=}

v1 bop e2 −→ v1 bop e ′2

SEARCHEQUALITY2

e2 −→ e ′2 v1 6= p(x) => e1 bop ∈ {===, ! ==}

v1 bop e2 −→ v1 bop e ′2

SEARCHPRINT

e1 −→ e ′1
console.log(e1) −→ console.log(e ′1)

SEARCHIF

e1 −→ e ′1
e1 ? e2 : e3 −→ e ′1 ? e2 : e3

SEARCHCONST

e1 −→ e ′1
const x = e1; e2 −→ const x = e ′1; e2

SEARCHCALL1

e1 −→ e ′1
e1(e2) −→ e ′1(e2)

SEARCHCALL2

e2 −→ e ′2(
p(x) => e1

)
(e2) −→ (

p(x) => e1
)
(e ′2)

Figure 8: Small-step operational semantics of JAVASCRIPTY: SEARCH rules.

e −→ e ′

TYPEERROREQUALITY1

bop ∈ {===, ! ==}

(p(x) => e1) bop e2 −→ typeerror

TYPEERROREQUALITY1

bop ∈ {===, ! ==}

v1 bop (p(x) => e2) −→ typeerror

TYPEERRORCALL

v1 6= p(x) => e1

v1(e2) −→ typeerror

PROPAGATEUNARY

uoptypeerror−→ typeerror

PROPAGATEBINARY

typeerror bop e2 −→ typeerror

PROPAGATEBINARY

v1 bop typeerror−→ typeerror

PROPAGATEPRINT

console.log(typeerror) −→ typeerror

PROPAGATEIF

typeerror ? e2 : e3 −→ typeerror

PROPAGATECONST

const x = typeerror; e2 −→ typeerror

PROPAGATECALL1

typeerror(e2) −→ typeerror

PROPAGATECALL2

v1(typeerror) −→ typeerror

Figure 9: Small-step operational semantics of JAVASCRIPTY: Dynamic type error rules.

12

