
CSCI 3155: Lab Assignment 1

Fall 2017: due Friday, September 8, 2017 plus 24-hour extension

The purpose of this assignment is to warm-up with Scala and to refresh preliminaries from
prior courses.

During recitation find a partner for this lab assignment. You will work on this assignment
closely with your partner. However, note that each student needs to submit and are individu-
ally responsible for completing the assignment.

You are welcome to talk about these questions beyond your teams. However, we ask that
you code in pairs. Also, be sure to acknowledge those with which you discussed, including your
partner and those outside of your pair.

Recall the evaluation guideline from the course syllabus.

Both your ideas and also the clarity with which they are expressed matter—both in

your English prose and your code!

We will consider the following criteria in our grading:

• How well does your submission answer the questions? For example, a common

mistake is to give an example when a question asks for an explanation. An

example may be useful in your explanation, but it should not take the place of

the explanation.

• How clear is your submission? If we cannot understand what you are trying

to say, then we cannot give you points for it. Try reading your answer aloud to

yourself or a friend; this technique is often a great way to identify holes in your

reasoning. For code, not every program that "works" deserves full credit. We

must be able to read and understand your intent. Make sure you state any pre-

conditions or invariants for your functions (either in comments, as assertions,

or as clauses as appropriate).

Try to make your code as concise and clear as possible. Challenge yourself to find the most
crisp, concise way of expressing the intended computation. This may mean using ways of ex-
pression computation currently unfamiliar to you.

Finally, make sure that your file compiles and runs on COG. A program that does not com-
pile will not be graded—no interview will be conducted.

Submission Instructions. We are using Github for assignment distribution and submission.
You need to have a Github identity and must have your full name in your Github profile so that
we can associate you with your submissions.

You will be editing and submitting the the following files:

1

• with your solution to the coding exercises;

• with your additional tests; and

• or for a pdf or a Markdown document that should
be pushed to the root directory of your repository with your response to the written ques-
tions (scanned, clearly legible handwritten write-ups are acceptable). You will not get

credit for write-ups in any other file format.

You are also likely to edit for any scratch
work.

Following good git practice, please make commits in small bits corresponding to completing
small conceptual parts and push often so that your progress is evident. We expect that you have
some familarity with git from prior courses. If not, please discuss with your classmates and the
course staff (e.g., via Piazza).

At any point, you may submit your file to COG for auto-testing. You need to
submit to COG for the auto-testing part of your score, as well as to continue to the interview.

Sign-up for an interview slot for an evaluator. To fairly accommodate everyone, the inter-
view times are strict and will not be rescheduled. Missing an interview slot means missing the
interview evaluation component of your lab score. Please take advantage of your interview time
to maximize the feedback that you are able receive. Arrive at your interview ready to show your
team’s implementation and your written responses. Implementations that do not compile and
run will not be evaluated.

Finally, upload to the moodle exactly the three files named above, that is,

• ;

• ; and

• or .

Getting Started. First, form a team of two for Lab 1 and pick a team name. For our bookkeep-
ing, please prefix your team name with (e.g.,).

You must work in teams of two, and you will form teams in lab section. If you miss lab
section on the day teams are formed, you need to find a partner on your own. If you really,
really cannot find a partner, then please contact the course staff (via Piazza).

Then, log into moodle and follow the Github Classroom link for setting up your Lab 1 repos-
itory with your team name. The first person will create the team, and the second person will
select the team name from the existing team names.

If you would like to look at the code before getting your own copy for submission, you may
go to .

Once you have the project files, follow the instructions in the for setting up your
development environment.

A suggested way to get familiar with Scala is to do some small lessons with Scala Koans
(). For this lab, we suggest that you consider looking at the
AboutAsserts, AboutLiteralBooleans, AboutLiteralNumbers, AboutLiteralStrings, AboutMeth-
ods, AboutRecursion, AboutTuples, AboutCaseClasses, and AboutPatternMatching koans.

2

https://github.com/csci3155/pppl-lab1
http://www.scalakoans.org/

1. Feedback. Complete the survey linked from the moodle after completing this assignment.
Any non-empty answer will receive full credit.

2. Scala Basics: Binding and Scope. For each the following uses of names, give the line where
that name is bound. Briefly explain your reasoning (in no more than 1–2 sentences).

(a) Consider the following Scala code.

1 val

2 def

3 val

4

5

6 def

7

The use of at line 4 is bound at which line? The use of at line 7 is bound at which
line?

(b) Consider the following Scala code.

1 val

2 def

3 match

4 case =>

5 case =>

6 val

7

8 val

9

10

11

12

13 val

The use of at line 3 is bound at which line? The use of at line 6 is bound at which
line? The use of at line 10 is bound at which line? The use of at line 13 is bound at
which line?

3. Scala Basics: Typing. In the following, I have left off the return type of function . The body
of is well-typed if we can come up with a valid return type. Is the body of well-typed?

1 def

2 val

3 if else

4

If so, give the return type of and explain how you determined this type. For this explana-
tion, first, give the types for the names and . Then, explain the body expression using the
following format:

3

e : ø because

e1 : ø1 because

. . .

e2 : ø2 because

. . .

where e1 and e2 are subexpressions of e. Stop when you reach values (or names).

As an example of the suggested format, consider the function:

def

Yes, the body expression of plus is well-typed with type .

: because

:

:

4. Run-Time Library. Most languages come with a standard library with support for things
like data structures, mathematical operators, string processing, etc. Standard library func-
tions may be implemented in the object language (perhaps for portability) or the meta lan-
guage (perhaps for implementation efficiency).

For this question, we will implement some library functions in Scala, our meta language,
that we can imagine will be part of the run-time for our object language interpreter. In
actuality, the main purpose of this exercise is to warm-up with Scala.

(a) Write a function

def

that returns the absolute value of . This a function that takes a value of type
and returns a value of type Double. This function corresponds to the JavaScript library
function Math.abs.

Instructor Solution: 1 line.

(b) Write a function

def

that returns the exclusive-or of and . The exclusive-or returns true if and only if
exactly one of or b is true. For practice, do not use the Boolean operators. Instead,
only use the if-else expression and the Boolean literals (i.e., true or false).

Instructor Solution: 4 lines (including 1 line for a closing brace).

5. Run-Time Library: Recursion.

(a) Write a recursive function

def

4

where returns a string with copies of concatenated together. For
example, returns . This function corresponds to the function
goog.string.repeat in the Google Closure library.

Instructor Solution: 4 lines (including 1 line for a closing brace).

(b) In this exercise, we will implement the square root function—Math.sqrt in the JavaScript
standard library. To do so, we will use Newton’s method (also known as Newton-Raphson).

Recall from Calculus that a root of a differentiable function can be iteratively approxi-
mated by following tangent lines. More precisely, let f be a differentiable function, and
let x0 be an initial guess for a root of f . Then, Newton’s method specifies a sequence of
approximations x0, x1, . . . with the following recursive equation:1

x

n+1 = x

n

° f (x

n

)
f

0(x

n

)
.

The square root of a real number c for c > 0, written
p

c, is a positive x such that x

2 = c.
Thus, to compute the square root of a number c, we want to find the positive root of
the function:

f (x) = x

2 ° c .

Thus, the following recursive equation defines a sequence of approximations for
p

c:

x

n+1 = x

n

°
x

2
n

° c

2x

n

.

i. First, implement a function

def

that takes one step of approximation in computing
p

c (i.e., computes x

n+1 from
x

n

).
Instructor Solution: 1 line.

ii. Next, implement a function

def

that computes the nth approximation x

n

from an initial guess x0. You will want to
call sqrtStep implemented in the previous part.
Challenge yourself to implement this function using recursion and no mutable
variables (i.e., vars)—you will want to use a recursive helper function. It is also
quite informative to compare your recursive solution with one using a while loop.
Instructor Solution: 7 lines (including 2 lines for closing braces and 1 line for a
require).

iii. Now, implement a function

def

1The following link is a refresher video on this algorithm: ,
January 2012

5

http://www.youtube.com/watch?v=1uN8cBGVpfs

that is very similar to but instead computes approximations x

n

until the
approximation error is within " (), that is,

|x2
n

° c| < " .

You can use your absolute value function implemented in a previous part. A
wrapper function sqrt is given in the template that simply calls with a
choice of x0 and epsilon.
Again, challenge yourself to implement this function using recursion and compare
your recursive solution to one with a while loop.
Instructor Solution: 5 lines (including 1 line for a closing brace and 1 line for a
require).

6. Data Structures Review: Binary Search Trees.

In this question, we will review implementing operations on binary search trees from Data
Structures. Balanced binary search trees are common in standard libraries to implement
collections, such as sets or maps. For example, the Google Closure library for JavaScript has
goog.structs.AvlTree. For simplicity, we will not worry about balancing in this question.

Trees are important structures in developing interpreters, so this question is also critical
practice in implementing tree manipulations.

A binary search tree is a binary tree that satisfies an ordering invariant. Let n be any node
in a binary search tree whose data value is d , left child is l , and right child is r . The ordering
invariant is that all of the data values in the subtree rooted at l must be < d , and all of the
data values in the subtree rooted at r must be ∏ d .

We will represent a binary trees containing integer data using the following Scala case classes
and case objects:

sealed abstract class

case object extends

case class extends

A is either or a with left child l, data value d, and right child r.

For this question, we will implement the following four functions.

(a) The function repOk

def

checks that an instance of SearchTree is valid binary search tree. In other words, it
checks using a traversal of the tree the ordering invariant. This function is useful for
testing your implementation. A skeleton of this function has been provided for you in
the template.

Instructor Solution: 7 lines (including 2 lines for closing braces).

(b) The function insert

def

6

inserts an integer into the binary search tree. Observe that the return type of insert is
a SearchTree. This choice suggests a functional style where we construct and return
a new output tree that is the input tree t with the additional integer n as opposed to
destructively updating the input tree.

Instructor Solution: 4 lines (including 1 line for a closing brace).

(c) The function deleteMin

def

deletes the smallest data element in the search tree (i.e., the leftmost node). It returns
both the updated tree and the data value of the deleted node. This function is intended
as a helper function for the function. Most of this function is provided in the
template.

Instructor Solution: 9 lines (including 2 lines for closing braces and 1 line for a require).

(d) The function delete

def

removes the first node with data value equal to n. This function is trickier than insert

because what should be done depends on whether the node to be deleted has children
or not. We advise that you take advantage of pattern matching to organize the cases.

Instructor Solution: 10 lines (including 2 lines for closing braces).

7. JavaScripty Interpreter: Numbers.

JavaScript is a complex language and thus difficult to build an interpreter for it all at once.
In this course, we will make some simplifications. We consider subsets of JavaScript and
incrementally examine more and more complex subsets during the course of the semester.
For clarity, let us call the language that we implement in this course JAVASCRIPTY.

For the moment, let us define JAVASCRIPTY to be a proper subset of JavaScript. That is, we
may choose to omit complex behavior in JavaScript, but we want any programs that we
admit in JAVASCRIPTY to behave in the same way as in JavaScript.

In actuality, there is not one language called JavaScript but a set of closely related languages
that may have slightly different semantics. In deciding how a JAVASCRIPTY program should
behave, we will consult a reference implementation that we fix to be Google’s V8 JavaScript
Engine. We will run V8 via Node.js, and thus, we will often need to write little test JavaScript
programs and run it through Node.js to see how the test should behave.

In this lab, we consider an arithmetic sub-language of JavaScript (i.e., an extremely basic
calculator). The first thing we have to consider is how to represent a JAVASCRIPTY program

as data in Scala, that is, we need to be able to represent a program in our object/source
language JAVASCRIPTY as data in our meta/implementation language Scala.

To a JAVASCRIPTY programmer, a JAVASCRIPTY program is a text file—a string of charac-
ters. Such a representation is quite cumbersome to work with as a language implementer.
Instead, language implementations typically work with trees called abstract syntax trees

(ASTs). What strings are considered JAVASCRIPTY programs is called the concrete syntax of

7

sealed abstract class

case class extends

n n

case class extends

uop e1 uope1
case class extends

bop e1 e2 e1 bop e2

sealed abstract class

case object extends

°

sealed abstract class

case object extends

+
case object extends

°
case object extends

§
case object extends

/

Figure 1: Representing in Scala the abstract syntax of JAVASCRIPTY. After each case class or
case object, we show the correspondence between the representation and the concrete syntax.

JAVASCRIPTY, while the trees (or terms) that are JAVASCRIPTY programs is called the abstract

syntax of JAVASCRIPTY. The process of converting a program in concrete syntax (i.e., as a
string) to a program in abstract syntax (i.e., as a tree) is called parsing.

For this lab, a parser is provided for you that reads in a JAVASCRIPTY program-as-a-string
and converts into an abstract syntax tree. We will represent abstract syntax trees in Scala
using case classes and case objects. The correspondence between the concrete syntax and
the abstract syntax representation is shown in Figure 1.

(a)
Interpreter 1. Implement the eval function

def

that evaluates a JAVASCRIPTY expression e to the Scala double-precision floating point
number corresponding to the value of e.

Consider a JAVASCRIPTY program e; imagine e stands for the concrete syntax or text of the
JAVASCRIPTY program. This text is parsed into a JAVASCRIPTY AST e, that is, a Scala value of
type Expr. Then, the result of eval is a Scala number of type Double and should match the
interpretation of e as a JavaScript expression. These distinctions can be subtle but learning
to distinguish between them will go a long way in making sense of programming languages.

At this point, you have implemented your first language interpreter!

8

