

Meeting 03 - Binding
and Scope

 In-Class Slides
 Book Chapter

http://localhost:6222/lectures/in-class/meeting03-binding-and-scope.pdf
http://localhost:6222/lectures/in-class/meeting03-binding-and-scope.pdf
http://localhost:6222/lectures/in-class/meeting03-binding-and-scope.pdf
https://csci3155.cs.colorado.edu/pppl-course/book/binding-and-scope.html
https://csci3155.cs.colorado.edu/pppl-course/book/binding-and-scope.html
https://csci3155.cs.colorado.edu/pppl-course/book/binding-and-scope.html

Reminders

Laptop-use section: back row

Use Piazza for all course communication.

Energetically engage in discussions with your classmates
to help each other on the learning activities — for your
Class Participation score.

For course administrative things (e.g., grade issues,
GitHub access issues), use private messages on Piazza to
“Instructors”.

Follow the reading Schedule on the course website.

Recitation sections are lab sections — bring your laptop!

Last Week: Getting your development environment set up!

This Week: Finishing HW1

Announcements
HW1 due Friday 6pm (with the 24-hour grace period for
when “stuff happens”)

Bor-Yuh Evan Chang

Today
Triage Your Questions

Preview HW1

Finish 3.2 : A Scala
crash course.

Chapter 4 : A Scala crash course.

Basic Values, Types, and Expressions

Binding and Scope

https://csci3155.cs.colorado.edu/pppl-course/book/expressions.html#sec-basic-values-types-and-expressions
https://csci3155.cs.colorado.edu/pppl-course/book/binding-and-scope.html
Bor-Yuh Evan Chang

Your Questions?
Review:

What is the functional computational model? It was the
computational model you learned first, right?

What is referential transparency?

Your Questions?

Value Bindings
(2 + 2) + 31
(2 + 2) + 62

res0_0: Int = 7
res0_1: Int = 10

Value Environments
How do we evaluate an expression with variable uses?

Value Environments
We need a way of capturing what the variable names in scope
are bound to — a value environment.

Value Environments

Substitution
How do we evaluate an expression with variable uses?

Value Environments: Take-Home
Points

We know how to introduce bindings from variable names to
values in Scala (i.e.,)

A value environment is a map from variable names to values
that stores the bindings.

In order to evaluate an expression containing variable uses,
we “apply” a value environment using substitution.

Conceptually, evaluating a sequence of declarations
yields a value environment.

val

val

Scoping

Shadowing
How do we read this?

val a = 11
val b = 22
val c = {3
 val a = 34
 a + b5
} + a6

a: Int = 1
b: Int = 2
c: Int = 6

Shadowing
Let’s pair up and find the binding positions for every variable
use in the program below. What is the final environment? Can
you rename variable bindings and uses consistently to
eliminate the shadowing?

val a = 21
val c = {2
 val a = 33
 val b = a * a4
 a * b 5
} * a6
val d = {7
 val b = 38
 a * b9
} * c10

a: Int = 2
c: Int = 54
d: Int = 324

Shadow-Respecting Substitution
What if we “naively” applied substitution of env1: to
the rest of the expression?

[𝚊 ↦ 2]

val a = 21
// env1: [a |-> 2]2
val c = {3
 val a = 34
 val b = a * a5
 a * b 6
} * a7
val d = {8
 val b = 39
 a * b10
} * c11

a: Int = 2
c: Int = 54
d: Int = 324

Free versus Bound Variables
{1
 { val x = 3; x + y }2
}3

cmd10.sc:1: not found: value y
val res10 = { val x = 3; x + y }
 ^Compilation Failed

:
Compilation Failed

Free versus Bound Variables
A closed expression is one that has no free variables:

{1
 { val y = 4; { val x = 3; x + y } }2
}3

res10: Int = 7

Functions

Closures
An expression defining a function can refer to variables bound
in an outer scope:

Tuples

Using Tuples

