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Announcements
Prof. Chang is delivering Thursday’s (10/24) lecture remotely, still come to class as it will
be interactive

Lab 4 due Mon 10/28



Today
Triage your questions

Will do my best to answer all that I can

Using a subset of JavaScripty, we will review abstract
syntax, small-step semantics, and dynamic typing

Using the same language, we will discuss static typing,
typing rules, and implement a new language with a static
type checker

Static Typing

https://csci3155.cs.colorado.edu/pppl-course/book/static-typing.html


Static Typing



Motivation
So far, we have handled mismatched types with coersions and
dynamic type errors

Both of these impelementations have painpoints, what are
some for each?

Static typing checking alleviates these issues by handling type
errors prior to running the program



JavaScripty with
Numbers and Functions
- Review



Syntax
Syntax for JavaScripty with only anonymous functions,
function calls, and numbers:

values v ::= n ∣ (x) => e1

expressions e ::= n ∣ (x) => e1 ∣ x ∣ e1(e2)

variables x



Semantics
Small-step semantics:

e ⟶ e′

DoCall

((x) => e1)(v2) ⟶ [v2/x]e1
SearchCall1

e1 ⟶ e′1
e1(e2) ⟶ e′1(e2)

SearchCall2
e2 ⟶ e′2

v1(e2) ⟶ v1(e′2)



Why do we need the substitute?



Implementation

How does our semantics handle the above?

eilltyped: 3(4)



Dynamic Type Errors - Syntax and
Semantics
Recall, we fixed the above issue by implementing dynamic
type errors

step-results r ::= typeerror e ∣ e′

e ⟶ r

TypeErrorCall

v1 ≠ x?(y) => e1

v1(e2) ⟶ typeerror(v1(e2))



PropagateCall1
e1 ⟶ typeerror e

e1(e2) ⟶ typeerror e

PropagateCall2
e2 ⟶ typeerror e

v1(e2) ⟶ typeerror e



Implementation



Static Typing
Some expressions are “well-typed” and some expressions
are “ill-typed”

Which one is ill-typed? Why?

What is a type?

A type system is a language of types and typing judgments
that define when an expression has a particular type

e1: ((i) => i)(4) e2: 3(4)

e : τ





TypeScripty
Let’s modify our language to allow us to type check before
interpretation, and impelement typing rules that can infer the
types of expressions

What are the types of this language?



TypeScripty Syntax

This is very similar to the abstract syntax of JavaScripty

All possible types of values have their own types

types τ, t ::= number ∣ (x: τ) => τ ′

values v ::= n ∣ (x: τ) => e1

expressions e ::= n ∣ (x: τ) => e1 ∣ x ∣ e1(e2)



TypeScripty Small-Step Operational
Semantics
e ⟶ e′

DoCall

((x: τ) => e1)(v2) ⟶ [v2/x]e1
SearchCall1

e1 ⟶ e′1
e1(e2) ⟶ e′1(e2)



Remains largely unchanged

We use the simplier version (without dynamic typing or
coercions) because we will be type checking before
interpretation

SearchCall2
e2 ⟶ e′2

v1(e2) ⟶ v1(e′2)



Typing Judgment
Recall our judgment form:

Let’s inductively define this judgment form with a set of typing
rules

What is our rule for a number?

What about a variable?

e : τ



Typing rules - Type Evironment
First, we need a type environment

Type environment  is either empty, or an existing
environment with the additional mapping from variable  to
type .

We now modify our judgment form:

type environments Γ, tenv ::= ⋅ ∣ Γ,x : τ

Γ
x

τ

Γ ⊢ e : τ



Typing rules
Γ ⊢ e : τ
TypeNumber

n : number
TypeFunction

Γ,x : τ ⊢ e1 : τ ′

Γ ⊢ (x: τ) => e1 : (y: τ) => τ ′

TypeVar

Γ ⊢ x : Γ(x)



What is  stating?

We will implement these rules as a static type checker which
will run before our interpreter

TypeCall
Γ ⊢ e1 : (x: τ) => τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1(e2) : τ ′

TypeFunction



Implementation
ewelltyped: ((i: number) => i)(4)

eilltyped: 3(4)



Soundness
We would like to show that our type system garuntees the
following property:

If an expression  is well-typed, then it can never get stuck in
a step - assuming a correctly-implemented interpreter.

This is soundess, if we claim that  is well-typed, then it will not
exhibit runtime errors related to typing. In other words, we are
not making incorrect assumptions.

If our type system is sound if and only if the progress and
peservation properties can be shown.

e

e



Progress
If , then  for some expression .e : τ e ⟶ e′ e′



Preservation
If  and , then .e ⟶ e′ e : τ e′ : τ



Showing These Properties
We want to show that these properties hold for test
expressions.

Let’s define the following judgment form:

Read as: Expression  reduces to a value  using some number
of steps while checking the preservation of type  at each step.

e ↪τ v

e v

τ



Showing These Properties cont.
We can now inductively define this judgment form with the
following inference rules:

e ↪τ v

ReducesValue
e value

e ↪τ e

ReducesProgressAndPreservation
e ⟶ e′ ⋅ ⊢ e′ : τ e′ ↪τ e′′

e ↪τ e′′



What is  stating?

What aspects of the rule cover the three properties?

Why do we need three versions of ?

ReducesProgressAndPreservation

e



Implementation



Let’s Add Binary Plus
How does our abstract syntax change?



Expanded TypeScripty Syntax

What about our typing rules?

types τ, t ::= number ∣ (x: τ) => τ ′

values v ::= n ∣ (x: τ) => e1

expressions e ::= n ∣ (x: τ) => e1 ∣ x ∣ e1(e2) ∣ e1+e2



BinaryPlus Typing Rule

We must also update our small-step operational semantics

TypeBinaryPlus
Γ ⊢ e1 : number Γ ⊢ e2 : number

Γ ⊢ e1+e2 : number



BinaryPlus Small-Step Semantics
e ⟶ e′

DoBinPlus
n′ = n1 + n2

n1 + n2 ⟶ n′

SearchBinary1
e1 ⟶ e′1

e1 + e2 ⟶ e′1 + e2
SearchBinary2

e2 ⟶ e′2
v1 + e2 ⟶ v1 + e′2



Implementation


