Meeting 27 - Procedural
Abstraction

Bor-Yuh Evan Chang
Tuesday, December 3, 2024

Meeting 27 - Procedural

Abstract

IF ANIONE HITS ME W

folg

WHAT |

F SOMEBODY HITS
YOU witH 250 SHOWBALLST

™
HIN

U Wil

A SNOWBALL,

What questions does your neighbor have?

Links

M In-Class Slides
©f In-Class Jupyter

file:///Users/bec/ac/39th/3155-f24/f24/website/_site/lectures/in-class/meeting27-encapsulating-effects.pdf
file:///Users/bec/ac/39th/3155-f24/f24/website/_site/lectures/in-class/meeting27-encapsulating-effects.pdf
file:///Users/bec/ac/39th/3155-f24/f24/website/_site/lectures/in-class/meeting27-encapsulating-effects.pdf
file:///Users/bec/ac/39th/3155-f24/f24/website/_site/lectures/in-class/meeting27-encapsulating-effects.ipynb
file:///Users/bec/ac/39th/3155-f24/f24/website/_site/lectures/in-class/meeting27-encapsulating-effects.ipynb
file:///Users/bec/ac/39th/3155-f24/f24/website/_site/lectures/in-class/meeting27-encapsulating-effects.ipynb

Announcements

e Remainder of the Semester
= HW 5 andtab5 before Thanksgiving break
" YUnit6{probably-one-combined-assignment) Lab 5 after Thanksgiving break
= Exam 5-6 in the last week of classes before the Final
e Come see us to make a study plan
= e.g.,viatheredo policy

= see the Final Exam as an opportunity to show growth from mid-semester exams.

https://piazza.com/class/m090yd3cdrb1ti/post/415

Today

e Procedural Abstraction
= | azy Evaluation
s Mutable State

e Triage Your Questions

https://csci3155.cs.colorado.edu/pppl-course/book/procedural-abstraction.html
https://csci3155.cs.colorado.edu/pppl-course/book/lazy-evaluation.html
https://csci3155.cs.colorado.edu/pppl-course/book/mutable-state.html

Questions?

e Review:

= What is the essence of imperative computation?

Procedures

What are procedures?

Assignment

expressions e = -:--|T =eq

What if we applied substitution as before?

Static Memory

Without procedure call, dynamically-allocated memory addresses seems overkill.

memories m = - |m|z > v

Procedures: Syntax

types 7T = number | (x:varT) = 7'

values v n| (x:varTt) = e;

expressions e = n|(z:vart) =>e;|x|ei(ey) |z =e€1|*a

Figure 1: Syntax of TypeScripty with number literals, procedure literals, procedure calls, and mutable variable assignment.

Procedures: Semantics

Procedures: Implementation

defined trait
defined class
defined class
defined class
defined class
defined class
defined function
defined class
defined object
defined class
defined object
import

defined function
defined function
defined function

Parameter-Passing
Modes

Small changes in DoCall.

Call-By-Name Parameters: Syntax

types T number | (x: m7) = 7'
values v == n|(x:mT7) = e
expressions e = n|(z:m7)=>e;|xz|eiler) |mz=er; e
parameter modes m := const | name

Figure 3: Syntax of TypeScripty with number literals, function literals with parameter modes, and variable declarations, and
function call expressions.

Call-By-Name Parameters: Semantics

Exotic Parameter-Passing Modes

Reference parameters (as in C++ and C#)?
Out parameters (asin C#)?

In-out parameters (as in Ada)?

Pointers

First-class addresses (i.e., when “addresses are values”).

Dynamically-Allocated Mutable
Objects: Syntax

2= n|{f:e}|er=ey|ei1.f| x| const x=e1; e

expressions e
values v == nl|a
location values [1= a.f

addresses a

Figure 5: Syntax of TypeScripty with number literals and dynamically-allocated mutable objects.

Dynamically-Allocated Mutable
Objects: Semantics

Dynamically-Allocated Mutable
Objects: Semantics

Aliasing

const a
const b
b.val =
console.

= { val: 1 };
= a;

42;
log(a.val)

