
Principles and Practice of Programming
Languages

Bor-Yuh Evan Chang

2024-09-08

Table of contents

Preface 3

I Introduction 4

1 Getting Your Money’s Worth 5
1.1 You will be able to learn new languages quickly and select a suitable one for

your task. 5
1.2 You will gain new ways of viewing computation and approaching algorithmic

problems. 6
1.3 You will gain new ways of viewing programs. 6
1.4 You will gain insight into avoiding mistakes for when you design languages. . . 7
1.5 You will be able to use AI assistants to accelerate your creative design. 7

2 Course Approach 8
2.1 Expectations and Finding Success . 8

II Programming Preliminaries 10

3 Expressions 11
3.1 Is a Program Executed or Evaluated? . 11
3.2 Basic Values, Types, and Expressions . 12

3.2.1 Static Type Checking . 13
3.2.2 Run-Time Errors . 15
3.2.3 Unit . 16
3.2.4 Operators . 17

3.3 Evaluation . 17

4 Binding and Scope 20
4.1 Binding Names . 20

4.1.1 Value Bindings . 20
4.1.2 Type Bindings . 22

4.2 Scoping . 22
4.2.1 Shadowing . 23
4.2.2 Free versus Bound Variables . 25

2

4.3 Mutable Variables . 26
4.4 Functions and Tuples . 27

4.4.1 Function Definitions . 27
4.4.2 First-Class Functions . 28
4.4.3 Tuples . 29
4.4.4 Pattern Matching . 32

4.5 String Interpolation . 33

5 Exercise: Binding and Scope 36
5.1 Example 1 . 36
5.2 Example 2 . 37

6 Data Types 38
6.1 Standard Collections . 38

6.1.1 Lists . 38
6.1.2 Options . 45
6.1.3 Maps . 47
6.1.4 Sets . 50

6.2 Classes . 50
6.2.1 Data Classes . 51

6.3 Algebraic Data Types . 52
6.3.1 Option . 53
6.3.2 Parametric Polymorphism . 54

7 Exercise: Expressions and Data Types 56
Learning Goals . 56
Instructions . 56

7.1 Type Checking . 56
7.2 Unit Testing . 59
7.3 Run-Time Library . 61
7.4 Imperative Iteration and Complexity . 66
Submission . 70

8 Recursion, Induction, and Iteration 72
8.1 Induction: Reasoning about Recursive Programs 73
8.2 Pattern Matching . 74
8.3 Function Preconditions . 75
8.4 Iteration: Tail Recursion with an Accumulator 76
8.5 Exercise: Exponentiation . 79
8.6 Exercise: Tail-Recursive Fibonacci . 79

9 Inductive Data Types 83
9.1 Lists . 83

3

9.2 Persistent Data Structures . 86
9.3 Abstract Syntax Trees (ASTs) . 89

9.3.1 Mini Programming Languages . 89
9.3.2 Representing Abstract Syntax . 89

10 Lab: Recursion, Inductive Data Types, and Abstract Syntax Trees 92
Learning Goals . 92
Instructions . 92

10.1 Recursion . 92
10.1.1 Repeat String . 92
10.1.2 Square Root . 93

10.2 Data Structures Review: Binary Search Trees 94
10.3 Interpreter: JavaScripty Calculator . 96

Experiment in a Worksheet . 98
Test-Driven Development and Regression Testing 98
Additional Notes . 99

Submission . 100

III Approaching a Programming Language 101

11 Concrete Syntax 102
11.1 Concrete versus Abstract Syntax . 102
11.2 Context-Free Grammars . 103

11.2.1 Deriving a Sentence in a Grammar . 104
11.2.2 Lexical and Syntactic . 105
11.2.3 Ambiguous Grammars . 105

12 Abstract Syntax and Parsing 110
12.1 Abstract Syntax . 110
12.2 Parsing . 112

12.2.1 Top-Down Parsing . 113

13 Exercise: Syntax 121
Learning Goals . 121
Instructions . 121
Imports . 121

13.1 Abstract Syntax Trees . 122
13.1.1 Defining an Inductive Data Type . 122
13.1.2 Converting to Negation Normal Form 123
13.1.3 Substitution . 124

13.2 Concrete Syntax . 125
13.2.1 Precedence Detective . 125

4

13.3 Parse Trees . 127
13.4 Defining Grammars . 129

14 Static Scoping 132
14.1 JavaScripty (JavaScript) . 132
14.2 Lettuce (OCaml) . 132
14.3 Smalla (Scala) . 132
14.4 JavaScripty: Variable Uses and Binding . 132
14.5 Free Variables . 133
14.6 Value Environments and Evaluation . 135
14.7 Renaming Bound Variables . 137
14.8 JavaScripty (JavaScript) . 137
14.9 Lettuce (OCaml) . 137
14.10Smalla (Scala) . 138

14.10.1 Higher-Order Abstract Syntax . 138
14.11JavaScripty: Concrete Syntax: Declarations . 139

15 Judgments 141
15.1 Grammars and Inference Rules . 141

15.1.1 Example: Syntax . 141
15.1.2 Key Intuition . 143

15.2 Derivations of Judgments . 144
15.3 Inductively-Defined . 146

15.3.1 Example: Structural Equality . 146
15.4 Functions versus Relations . 147

15.4.1 Example: Semantics . 148

16 Lab: Basic Values, Variables, and Judgments 150
Learning Goals . 150
Instructions . 150

16.1 Interpreter: JavaScripty Calculator . 151
16.2 Coercions: Basic Values . 153

16.2.1 Booleans, Strings, and Undefined . 153
16.2.2 Expressions . 154
16.2.3 Semantics Detective: JavaScript is Bananas 157

16.3 Interpreter: JavaScripty Variables . 159
Testing . 161

Submission . 162

17 Review: Syntax 164
Instructions . 164
Learning-Levels Rubric . 165

17.1 Abstract Syntax Trees . 165

5

17.2 Ambiguity Detective . 166
17.3 Grammars . 167
17.4 Concrete Syntax, Abstract Syntax, and Semantics 168
17.5 Interpreter Implementation . 168

IV Language Design and Implementation 171

18 Operational Semantics 172
18.1 Big-Step Operational Semantics . 172

18.1.1 JavaScript is Bananas . 172
18.1.2 An Evaluation Judgment . 173

18.2 One Type of Values . 174
18.3 Dynamic Typing . 176
18.4 Coercions . 180
18.5 Variables . 181
18.6 JavaScripty: Variables, Numbers, and Booleans 184
18.7 JavaScripty: Strings . 185

19 Functions and Dynamic Scoping 189
19.1 Functions Are Values . 189
19.2 Dynamic Scoping . 190
19.3 Closures . 195
19.4 Substitution . 197
19.5 Recursive Functions . 198
19.6 JavaScripty: Concrete Syntax: Functions . 199

20 Exercise: Big-Step Operational Semantics 200
Learning Goals . 200
Instructions . 200
Imports . 200

20.1 A Big-Step Javascripty Interpreter . 201
20.1.1 Syntax . 202

20.2 Dynamic Scoping Test . 202
20.3 Reading an Operational Semantics . 203

20.3.1 Strings . 204
20.3.2 Functions . 205

20.4 Implementing from Inference Rules . 206
20.4.1 Abstract Syntax . 206
20.4.2 Variables, Numbers, and Booleans . 208
20.4.3 Functions . 208
20.4.4 Dynamic Typing . 209
20.4.5 Dynamic Scoping . 209

6

20.4.6 Closures . 210
20.5 Implementing Recursive Functions (Accelerated) 211

20.5.1 Defining Inference Rules . 212
20.5.2 Writing a Test Case . 212

21 Evaluation Order 213
21.1 A Small-Step Operational Semantics . 213
21.2 One Type of Values . 214
21.3 Dynamic Typing . 220
21.4 Generic Evaluation Order . 225
21.5 Non-Determinism . 226
21.6 Short-Circuiting Evaluation . 226
21.7 Polymorphism . 228
21.8 Recursion . 228
21.9 Substitution . 232
21.10Multi-Step Reduction . 238

22 Lab: Small-Step Operational Semantics 241
Learning Goals . 241
Instructions . 241

22.1 Small-Step Interpreter: JavaScripty Functions 242
22.2 Static Scoping . 243
22.3 Iteration . 243
22.4 Small-Step Interpreter . 246
22.5 Small-Step Operational Semantics . 248

22.5.1 Do Rules . 248
22.5.2 Search Rules . 248
22.5.3 Coercing to Boolean . 248
22.5.4 Dynamic Typing Rules . 248

22.6 Concept Exercises . 248
22.7 Testing . 252
22.8 Accelerated Component . 252

22.8.1 Additional Type Coercions . 252
22.8.2 Updating the Small-Step Operational Semantics 253
22.8.3 Update Step . 254
Notes . 254

Submission . 255

23 Review: Semantics 256
Instructions . 256
Learning-Levels Rubric . 257

23.1 Dynamic versus Static Scoping . 257
23.2 Small-Step Semantics with Coercions . 259

7

23.3 Short-Circuit Evaluation and Evaluation Order 261
23.4 Big-Step Semantics with Substitution and Dynamic Type Errors 262

V Static Checking 268

24 Higher-Order Functions 269
24.1 Currying . 269
24.2 Collections and Callbacks . 271

24.2.1 Map . 271
24.2.2 FlatMap . 276
24.2.3 FoldRight . 277
24.2.4 Other Folds and Reduce . 280

24.3 Abstract Data Types . 281

25 Exercise: Higher-Order Functions 283
Learning Goals . 283
Instructions . 283
Imports . 283

25.1 Collections . 284
25.1.1 Lists . 284
25.1.2 Maps . 287
25.1.3 Trees . 287

25.2 flatMap . 290

26 Static Type Checking 292
26.1 JavaScripty: Numbers and Functions . 292

26.1.1 Syntax . 292
26.1.2 Small-Step Operational Semantics . 293

26.2 Getting Stuck . 294
26.3 Dynamic Typing . 295
26.4 Static Typing . 296
26.5 TypeScripty: Numbers and Functions . 297

26.5.1 Syntax . 297
26.5.2 Small-Step Operational Semantics . 298

26.6 Typing Judgment . 299
26.7 Type Soundness . 303

27 Lazy Evaluation 306

28 Lab: Static Type Checking 307
Learning Goals . 307
Instructions . 307

28.1 Static Typing: TypeScripty: Functions and Objects 308

8

28.2 Interpreter Implementation . 310
28.3 Base TypeScripty . 312

28.3.1 Small-Step Reduction . 312
28.3.2 Static Type Checking . 314

28.4 Immutable Objects (Records) . 314
28.4.1 Small-Step Reduction . 314
28.4.2 Static Type Checking . 316

28.5 Multi-Parameter Recursive Functions . 317
28.5.1 Small-Step Reduction . 317
28.5.2 Static Type Checking . 318

29 Review: Higher-Order Functions and Static Checking 320
Instructions . 320
Learning-Levels Rubric . 321

29.1 Higher-Order Functions . 321
29.2 Static Typing . 325

VI Imperative Computation 330

30 Encapsulating Effects 331
30.1 Abstract Data Types . 331
30.2 Error Effects . 332

30.2.1 Option . 333
30.2.2 Either . 337
30.2.3 Try . 338

30.3 Non-Determinism Effects . 339
30.4 Mutation Effects . 340
30.5 Encapsulating Mutation Effects . 342
30.6 Monads . 347

30.6.1 Monad Interface . 348
30.6.2 Contextual Abstraction . 349

31 Exercise: Programming with Encapsulated Effects 352
Learning Goals . 352
Instructions . 352
Imports . 352

31.1 TypeScripty: Numbers, Booleans, and Functions 353
31.1.1 Syntax . 353
31.1.2 Static Type Checking . 355

31.2 Error Effects . 356
31.2.1 Type-Error Result . 357
31.2.2 Implementation . 358

9

31.3 Mutation Effects . 361
31.3.1 Defining Generic DoWith Methods . 361
31.3.2 Renaming Bound Variables . 363
31.3.3 Test . 366
31.3.4 DoWith with Collections . 366

32 Mutable State 369
32.1 JavaScripty: Mutable Variables . 369

32.1.1 Syntax . 369
32.1.2 Small-Step Operational Semantics . 371
32.1.3 Implementation . 375

32.2 Other Effects . 382

References 383

10

Preface

Disclaimer: This manuscript is a draft of a set of course notes for CSCI 3155 Principles of
Programming Languages at the University of Colorado Boulder. There may be typos, bugs,
or inconsistencies that have yet to be resolved.

This version is work-in-progress update and revision from a previous LaTeX version.

The definitive current version is at https://csci3155.cs.colorado.edu/pppl-course/book/.

11

https://csci3155.cs.colorado.edu/csci3155-notes.pdf
https://csci3155.cs.colorado.edu/pppl-course/book/

Part I

Introduction

12

1 Getting Your Money’s Worth

This course is about principles, concepts, and ideas that underly programming languages. But
what does this statement mean?

As a student of computer science, it is completely reasonable to think and ask, “Why bother?
I’m proficient and like programming in Ruby. Isn’t that enough? Isn’t language choice just a
matter of taste? If not, should I be using another language?”

Certainly, there are social factors and an aspect of personal preference that affect the pro-
gramming languages that we use. But there is also a body of principles and mathematical
theories that allow us to discuss and think about languages in a rigorous manner. We study
these underpinnings because a language affects the way one approaches problems working in
that language and affects the way one implements that language. At the end of this course,
we hope that you will have grown in the following ways.

1.1 You will be able to learn new languages quickly and select a
suitable one for your task.

This goal is very much a practical one. Languages that are “popular” vary quickly. The TIOBE
Programming Community Index surveys the popularity of programming languages over time.
While it is just one indicator, the take home message seems to be that a large number of
languages are active at any one time, and the level of activity of any language varies widely
over time. The “hot” languages now or the languages that you study now will almost certainly
not be the ones you need later in your career.

There is a lingo for describing programming languages. The introduction to any program-
ming language is likely to include a statement that aims to succinctly captures various design
choices.

Python “Python is an interpreted, interactive, object-oriented programming language. It in-
corporates modules, exceptions, dynamic typing, very high level dynamic data types,
and classes.” [6]

OCaml OCaml offers “a power type system, equipped with parametric polymorphism and
type inference […], user-definable algebraic data types and pattern matching […], auto-
matic memory management […], separate compilation of stand-alone applications […], a

13

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

sophisticated module system […], an expressive object-oriented layer […], and efficient
native code compilers.”

Haskell Haskell is “a polymorphically statically typed, lazy, purely functional language, quite
different from most other programming languages.”

Scala “Scala is a blend of object-oriented and functional programming concepts in a statically
typed language” [4].

At this point, it is understandable if the above statements seem as if they are written a foreign
language.

1.2 You will gain new ways of viewing computation and
approaching algorithmic problems.

There are fundamental models of computation or programming paradigms that persist (e.g.,
imperative programming and functional programming). Most general-purpose languages mix
paradigms but generally have a bias. These biases can shape the way you approach problems.

For natural languages, linguistic relativity, the hypothesis that the language one speaks in-
fluences the way one perceives the world, is both tantalizing and controversial. Many have
espoused this notion to programming languages by analogy. Setting aside the controversy and
assuming at least a kernel of truth, practicing and working with different programming models
may expose ideas in new contexts. For example, MapReduce is the programming model cre-
ated by Google for data processing on large clusters inspired by the functional programming
paradigm [1].

This course is not a survey of programming languages present and past. We may make ref-
erences to programming languages as examples of particular design decisions, but the goal is
not to “learn” lots of languages. The analogy to natural languages is perhaps apt. It does not
particularly help one understand the structure of natural languages by learning to say “hello”
in as many as possible.

1.3 You will gain new ways of viewing programs.

The meaning of program is given by how it executes, but a program is also artifact in itself
that has properties. What a program does or how a program executes is perhaps the primary
way one views programs—a program computes something. At the same time, a program can
be transformed into a different one that “behaves the same.” How do we characterize “behaves
the same”? This question is one that can be discussed using programming language theory.

14

It is also a question of practical importance for language implementation. A compiler translates
a program that a human developer writes into one a computational machine can execute. The
compiler must abide by the contract that it outputs a program for the machine that “behaves
the same” as the program written by the developer.

1.4 You will gain insight into avoiding mistakes for when you design
languages.

When (not if!) you design and implement a language, you will avoid the mistakes of the
past. You may not design a general-purpose programming language, but you may have a need
to create a “little” configuration, mark-up, or layout language. “Little” languages are often
created without much regard to good design because they are “little,” but they can quickly
become not so “little.”

Avoiding bad language design is tricky. Experts make mistakes, and mistakes can have long-
lasting effects. Turing award winner Sir C.A.R. Hoare has called his invention of the null
reference a “billion dollar mistake” [2].

1.5 You will be able to use AI assistants to accelerate your creative
design.

Generative AI for programming is here to stay. AI is amazing accelerator for creative design
by drawing on what has been done before—if you can evaluate what it gives you.

Understanding how programs and programming languages are composed enables to effectively
understand what makes sense and what needs refinement to create something new.

15

2 Course Approach

We will construct language interpreters to get experience with the “guts” of programming
language design and implementation. The semester project will be to build and understand in-
terpreters for mini-versions of JavaScript—our example source language. The source language
is what called the object language (i.e., the under under study). We will see that interpreters
are the basis for realizing computation, and we will study the programming language theory
that enable us to reason carefully about a language’s design and implementation. Our ap-
proach will be gradual in that we will initially consider a small subset of JavaScript and then
slowly grow the aspects of the language that we consider (and see how they underlie many
other programming languages).

Our implementation language of study will be Scala. The implementation language is the
meta language (i.e., the language used to study another). Scala is a modern, general-purpose
programming language that includes many advanced ideas from programming language re-
search. In particular, we are interested in it because it is especially well suited for building
language tools. As quoted above, Scala “blends” concepts from object-oriented and functional
programming [4] and in many ways tries to support each in its “native environment.” Scala has
also found a myriad of other applications, including being a important language for building
data-processing pipelines. It is compatible with Java and runs on the Java Virtual Machine
(JVM) and has been applied in industrial practice by such companies as LinkedIn.

Incoming students often expect this course to be what I will call a trip to the Zoo of Program-
ming Languages. While it is certainly interesting to go to the zoo, we seek a more informative
and scientific study of the underlying principles. A more apt analogy is an anatomy course
where we will study the “guts” and inner-workings of programming languages. After this
course, such an anatomical study will enable us to compare and contrast programming lan-
guages in a substantive manner and address the learning goals outlined above in Chapter 1.

2.1 Expectations and Finding Success

The study of programming languages gets at the core of computation and introduces abstract
concepts. Past experience suggests that the study of programming languages can lead to un-
necessary panic and anxiety. At times, it may appear like a lot of effort and complexity to
study a toy language and to define and describe seemingly simple language features. In the

16

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.scala-lang.org/

end, this “dissection”-based approach pays off in distilling computation into simple, compos-
able concepts that enable you to see how they appear over-and-over again to realize modern
software.

This course is an active learning course, which means the learning is driven primarily by active
discovery in doing the assignments. To succeed in the course, we suggest to the student to
keep the following in mind:

Principles Exist While everyday programming languages seem complex, underlying principles
exist. They take work to uncover and see, but they can be understood. Knowing the
underlying principles are there, you should not panic and always seek help from course
guides.

Practioners Exist Programming languages come alive from the people that use them to cre-
ate amazing software. Everyday languages, like Scala, have a community and are well
documented. You should join the community and get used to reading documentation.

Learn by Doing Concepts may look simple when the course guides walk you through them.
However, until you dive deep and get your hands dirty on code — run it, modify it, write
it, play with it, talk about it in your own words, you will not own the knowledge. You
will make mistakes and get confused along the way, but with hard work and help from
your course guides, you will truly master the concepts.

17

Part II

Programming Preliminaries

18

3 Expressions

3.1 Is a Program Executed or Evaluated?

Broadly speaking, the “schism” between imperative programming and functional programming
comes down to the basic notion of what defines a computation step. In the imperative com-
putational model, we focus on executing statements for its effects on a memory. A program
consists of a sequence of statements (or sometimes called commands or instructions) that is
largely viewed as fixed and separate from the memory (or sometimes called the store) that it is
modifying. Assembly languages and C are often held as examples of imperative programming.
In the functional computational model, we focus on evaluating expressions, that is, rewriting
expressions until we obtain a value. A program and the computation “state” is an expres-
sion (also sometimes called a term). To a first approximation, there is no external memory.
Expression rewriting is actually not so unfamiliar. Primary school arithmetic is expression
evaluation:

(1 + 1) + (1 + 1) ⟶ 2 + (1 + 1)
⟶ 2 + 2
⟶ 4

where the ⟶ arrow signifies an evaluation rewriting step.

In actuality, the “schism” is somewhat false. Few languages are exclusively imperative or
exclusively functional in the sense defined above. “Imperative programming languages” have
effect-free expression subsets (e.g., for arithmetic), while “functional programming languages”
have effectful expressions (e.g., for printing to the screen). Being effect-free or pure has ad-
vantages by being independent of how a machine evaluates expressions (i.e., called referential
transparency). For example, the final result does not depend on the order of evaluation (e.g.,
whether the left (1 + 1) or the right (1 + 1) is evaluated first, or whether they are done in
parallel), which makes it easier to reason about programs in isolation (e.g., the meaning of
(1 + 1) + (1 + 1)) and for compilers to optimize your code. At the same time, interacting
with the underlying execution engine can be powerful, and thus we at times want effects.
The potentially surprising idea at this point is how often we can program effectively without
effects.

We consider and want to support both effect-free and effectful computation. The take-home
message here is it is too simplistic to say a programming language is imperative or functional.

19

Rather, we see that it is a bias in perspective in how we see computation and programs.
For imperative languages, programs, and constructs, we speak of statement execution that
modifies a memory or data store. For functional languages, programs, and constructs, we
think of expression evaluation that reduces to a value or terminal result. We will see how
this bias affects, for example, how we program repetition (i.e., looping versus recursion or
comprehensions).

Note that the term “functional programming language” is quite overloaded in practice. For
example, it may refer to the language having the expression rewriting bias described above,
being pure and free of effectful expressions, or having first-class functions(discussed in).

Many languages, including JavaScript and Scala, have aspects of both, including the features
that are often considered the most characteristic: mutation and first-class functions.

3.2 Basic Values, Types, and Expressions

We begin our language study by focusing on a small subset of Scala. Our intent is not to give
an exhaustive tutorial or manual on Scala, but rather to use Scala as an example language to
highlight concepts that underly many other programming languages. For a tutorial on Scala,
see, for example, Programming in Scala [5].

Basic expressions, values, and types are seemingly boring, but they also form the basis of any
programming language. A value has a type, which defines the operations that can be applied
to it. Scala has all the familiar basic types, such as Int, Long, Float, Double, Boolean, Char,
and String.

We can directly write down values of these types using literals:

42
42L
1.618f
1.618
true
'a'
"Hello!"

res0_0: Int = 42
res0_1: Long = 42L
res0_2: Float = 1.618F
res0_3: Double = 1.618
res0_4: Boolean = true
res0_5: Char = 'a'
res0_6: String = "Hello!"

20

An expression can be a literal or consist of operations that await to be evaluated. For example,
here are some expected expressions:

44 - 2
!true
true && false
1 < 2
if (1 < 2) 3 else 4
"Hello" + "!"

res1_0: Int = 42
res1_1: Boolean = false
res1_2: Boolean = false
res1_3: Boolean = true
res1_4: Int = 3
res1_5: String = "Hello!"

In the above, we see Scala infers the type of each expression and evaluates each expression to
its value. A value is an expression cannot be evaluated any further — the result of evaluating
an expression.

3.2.1 Static Type Checking

We can check that an expression has the expected type as follows:

42: Int
42L: Long
1.618f: Float
1.618: Double
true: Boolean
'a': Char
"Hello!": String
44 - 2: Int
!true: Boolean
true && false: Boolean
1 < 2: Boolean
if (1 < 2) 3 else 4: Int
"Hello" + "!": String

res2_0: Int = 42
res2_1: Long = 42L

21

res2_2: Float = 1.618F
res2_3: Double = 1.618
res2_4: Boolean = true
res2_5: Char = 'a'
res2_6: String = "Hello!"
res2_7: Int = 42
res2_8: Boolean = false
res2_9: Boolean = false
res2_10: Boolean = true
res2_11: Int = 3
res2_12: String = "Hello!"

Often, we want to refer to arbitrary values, types, or expressions in a programming language.
To do so, we use meta-variables that stand for entities in our language of interest, such as 𝑣
for a value, 𝜏 for a type, and 𝑒 for an expression.

We have annotated types on all of the expressions above, that is, we assert that the value that
results from evaluating that expression (if one results) should have that type. In this case, all
of these examples are well-typed expressions, that is, the typing assertion holds for them.

42: Boolean

cmd3.sc:1: type mismatch;
found : Int(42)
required: Boolean
val res3 = 42: Boolean

^Compilation Failed

:
Compilation Failed

The typing assertion is also an expression, so we can annotate sub-expressions to check that
they have the expected type. Doing so becomes useful for debugging when an expression 𝑒
becomes complicated.

(44: Int) - 2

res3: Int = 42

Scala is statically typed. In essence, this statement means that the Scala compiler will perform
some validation at compile-time (called type checking) and only translate well-typed expres-
sions.

22

true - 2

cmd4.sc:1: value - is not a member of Boolean
val res4 = true - 2

^Compilation Failed

:
Compilation Failed

We discuss type checking in later chaptersfurther in; for now, it suffices to view type checking
as making sure all operations in all sub-expressions have the “expected type.”

(1 + 2) + (3 + 4): Int
- if 1 + 2: Int
- if 1: Int
- if 2: Int

- if 3 + 4: Int
- if 3: Int
- if 4: Int

Here, we check explicitly that each sub-expression has the expected type:

((1: Int) + (2: Int): Int) + ((3: Int) + (4: Int): Int)

res4: Int = 10

We state that an expression 𝑒 is well-typed with type 𝜏 using essentially the same notation as
Scala, that is, we write

𝑒 ∶ 𝜏 for expression 𝑒 has type 𝜏 .

3.2.2 Run-Time Errors

An expression may not always yield a value. For example, a divide-by-zero expression

42 / 0

23

generates a run-time error, that is, an error that is raised during evaluation. Some languages
are described as being dynamically typed, which means no type checking is performed before
evaluation. Rather, a run-time type error is raised when evaluation encounters an operations
that cannot be applied to the argument values. In general, the term static means before
evaluating the program, while the term dynamic means during the evaluation of the program.

We can also test that an expression has the expected value at run-time with an assert expres-
sion:

assert(44 - 2 == 42)
assert(1 < 2 == true)
assert((if (1 < 2) 3 else 4) == 3)
assert("Hello" + "!" == "Hello!")

Nothing is printed in the above because all of the assertions pass (i.e., all of the given
expressions to assert evaluate to true).

assert(44 - 2 == 0)

The above is now a run-time error.

3.2.3 Unit

Unlike some other common languages (e.g., JavaScript, C, Java), Scala does not distinguish
between expressions and statements. Instead, constructs we might consider as “effectful state-
ments” are expressions that have type Unit.

assert(44 - 2 == 42): Unit
println("Hello!"): Unit

Hello!

The Unit type has one single value “()” (usually called the “unit” value).

(): Unit

Since the unit value () itself is uninteresting and usually associated with side-effecting expres-
sion, the printer in the above simply chooses to not print unit values.

24

3.2.4 Operators

Scala has the all of the usual operators on numeric, Boolean, and String data types. For the
numeric types, Scala will perform conversions implicitly using methods like toInt, toLong,
and toString.

3L + 4
3 + 4L
(3L + 4L).toInt
3.toString

res10_0: Long = 7L
res10_1: Long = 7L
res10_2: Int = 7
res10_3: String = "3"

An interesting aspect of Scala is that all operators are actually methods.

3 + 4
3.+(4)
"Hello".endsWith("lo")
"Hello" endsWith "lo"

res11_0: Int = 7
res11_1: Int = 7
res11_2: Boolean = true
res11_3: Boolean = true

Binary operators like 3 + 4 is just shorthand for a method call 3.+(4). That is, these two
syntactically different expressions have the same semantics. The term “syntactic sugar” is
sometimes used in this case (e.g., 3 + 4 is syntactic sugar for 3.+(4)). Note in the above that
this works for any binary method, not just ones using symbols (e.g., endWith as above).

3.3 Evaluation

We need a way to write down evaluation to describe how values are computed. Recall that in
our setting, the computation state is an expression, so we write

𝑒 ⟶ 𝑒′ for expression 𝑒 steps to expression 𝑒′ in one step.

25

For example,
(1 + 2) + (3 + 4) ⟶ 3 + (3 + 4)

is the only case assuming left-to-right evaluation order.

What exactly is “one step” is a matter of definition, which we do not worry about much at
this point. Rather, we may write

𝑒 ⟶∗ 𝑒′ for expression 𝑒 steps to 𝑒′ in 0 or more steps,

that is, in some number of steps.

For example, all of the following hold:

(1 + 2) + (3 + 4) ⟶∗ (1 + 2) + (3 + 4)
(1 + 2) + (3 + 4) ⟶∗ 3 + (3 + 4)
(1 + 2) + (3 + 4) ⟶∗ 3 + 7
(1 + 2) + (3 + 4) ⟶∗ 10

For any expression, the possible next steps dictate how evaluation proceeds and is related to
concepts like evaluation order and eager versus lazy evaluation, which we revisit laterin ?@sec-
operational-semantics and ?@sec-procedural-abstraction. Eager evaluation means that
sub-expressions are evaluated to values before applying the operation. At this point, it may be
hard to imagine anything but eager evaluation. In our current subset of Scala, eager evaluation
applies (though Scala supports both).

Sometimes, we only care about the final value of an expression (i.e., its value), so we write

𝑒 ⇓ 𝑣 for expression 𝑒 evaluates to value 𝑣.

When we write this particular expression 𝑒

3 + 4

res12: Int = 7

we are asking the interpreter ⇓ for its value 𝑣, which in this case is 7. That is, we say that for
Scala, the following evaluation relation holds:

3 + 4 ⇓ 7 .

We can see that Scala evaluates + left-to-right by adding side-effecting expressions, such as
printing to console:

26

{ println("eval((1 + 2) + (3 + 4))");
{ println("- if eval(1 + 2)");

{ println(" - if eval(1)"); 1 } +
{ println(" - if eval(2)"); 2 }

} +
{ println("- eval(3 + 4)");

{ println(" - if eval(3)"); 3 } +
{ println(" - if eval(4)"); 4 } } }

eval((1 + 2) + (3 + 4))
- if eval(1 + 2)
- if eval(1)
- if eval(2)

- eval(3 + 4)
- if eval(3)
- if eval(4)

res13_1: Int = 10

Here, we add a println printing expression to each sub-expression (using the indention format
when we considered static type checking above in Section 3.2.1).

27

4 Binding and Scope

4.1 Binding Names

4.1.1 Value Bindings

Thus far, our expressions consist only of operations on literals, which is certainly restricting!
Like other languages, we would like to introduce names that are bound to other items, such
as values.

To introduce a value binding in Scala, we use a val declaration, such as the following:

val two = 2
val four = two + two

two: Int = 2
four: Int = 4

The first declaration binds the name two to the value 2, and the second declaration binds the
name four to the value of two + two (i.e., 4). The syntax of value bindings is as follows:

val 𝑥: 𝜏 = 𝑒

for a variable 𝑥, type 𝜏 , and expression 𝑒. For the value binding to be well typed, expression
𝑒 must be of type 𝜏 . The type annotation : 𝜏 is optional, which if elided is inferred from
typing expression 𝑒. At run-time, the name 𝑥 is bound to value of expression 𝑒 (i.e., the
value obtained by evaluating 𝑒 to a value). If 𝑒 does not evaluate to a value, then no binding
occurs.

A binding makes a new name available to an expression in its scope. For example, the name
two must be in scope for the expression two + two to have meaning. Intuitively, to evaluate
this expression, we need to know to what value the name two is bound. We can view val
declarations as evaluating to a value environment. A value environment is a finite map from
names to values, which we write as follows:

[𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛]
For example, the first binding in our example

28

val two = 2

two: Int = 2

yields the following environment:
[two ↦ 2]

Intuitively, to evaluate the expression two + two, we replace or substitute the value of the
binding for the name two

two + two

res2: Int = 4

and then reduce as before:

[two ↦ 2](two + two) = 2 + 2 ⟶ 4 .

In the above, we are conceptually “applying” the environment as a substitution to the expres-
sion two + two to get the expression 2 + 2, which reduces to the value 4.

For type checking, we need a similar type environment that maps names to types. For example,
the type environment [two ↦ Int] may be used to type check the expression two + two.

Declarations may be sequenced as seen in the example above where the binding of the name
two is then used in the binding of the name four.

val two = 2
val four = two + two

two: Int = 2
four: Int = 4

We can see that what is printed above are the value and type environments:

[two ↦ 2, four ↦ 4] [two ↦ Int, four ↦ Int] .

Sometimes, we use notation for the mappings that suggest value or type environments, respec-
tively:

[two ⇓ 2, four ⇓ 4] [two ∶ Int, four ∶ Int] .

29

4.1.2 Type Bindings

Another kind of binding is for types where we can bind one type name to another creating a
type alias, such as

type Str = String
"Hello": Str
"Hello"

defined type Str
res4_1: Str = "Hello"
res4_2: String = "Hello"

Type binding is not so useful in our current Scala subset, but such bindings become particularly
relevant later onin ?@sec-something.

4.2 Scoping

At this point, all our bindings are placed into the global scope. A scope is simply a window
of the program where a name applies. We can limit the scope of a variable by using blocks
{…}:

{
{ val three = 3 }
three

}

cmd5.sc:2: not found: value three
val res5_1 = three

^Compilation Failed

:
Compilation Failed

30

1 val a = 1
2 val b = 2
3 val c = {
4 val a = 3
5 a + b
6 } + a

a: Int = 1
b: Int = 2
c: Int = 6

Figure 4.1: Nested scopes and shadowing.

4.2.1 Shadowing

A block introduces a new nested scope where the name in an inner scope may shadow one in
an outer scope:

In the above Figure 4.1, there are two scopes, and there is a binding to a name a in each. The
use of a on line 5 refers to the inner binding on line 4, while the use of a on line 6 refers to
the outer binding on line 1. Also note that the use of b on refers to the binding of b in the
outer scope, as b is not bound in the inner scope. The name c ends up being bound to the
value 6. In particular, after applying the environments, we end up evaluating the expression
{ 3 + 2 } + 1. Note that value binding is not assignment. After the inner binding of name a
on line 4, the outer binding of a still exists but is hidden—called shadowed—within the inner
scope.

We can rename the two variables named a in the expression in Figure 4.1 to a semantically
equivalent expression that eliminates the shadowing:

1 val a_outer = 1
2 val b = 2
3 val c = {
4 val a_inner = 3
5 a_inner + b
6 } + a_outer

a_outer: Int = 1
b: Int = 2
c: Int = 6

Figure 4.2: Renaming to eliminate shadowing.

31

Observe that in Figure 4.2, the name a_inner is regardless unavailable in the outer, global
scope.

Also observe that in Scala, blocks {…} are also expressions—like (…) expressions that intro-
duce a new scope:

val a = { 3 + 2 } + 1
val b = (3 + 2) + 1

a: Int = 6
b: Int = 6

Scala uses static scoping (or also called lexical scoping), which means that the binding that
applies to the use of any name can be determined by examining the program text. Specifically,
the binding that applies is not dependent on evaluation order. For Scala, the rule is that for
any use of a variable 𝑥, the innermost scope that (a) contains the use of 𝑥 and (b) has a binding
for 𝑥 is the one that applies. Note that there are only two scopes in the above example in
Figure 4.1 (e.g., not one for each declaration). Thus, the following example has a compile-time
error:

1 val a = 1
2 val b = {
3 val c = a
4 val a = 2
5 c
6 }

cmd8.sc:3: forward reference extends over definition of value c
val c = a

^Compilation Failed

:
Compilation Failed

In particular, the use of variable a at line 3 refers to the binding at line 4, and the use comes
before the binding.

Consider again the nested scopes and shadowing example in Figure 4.1. How do we describe
the evaluation of this expression? The substitution-based evaluation rule for names described
previously in Section 4.1 needs to be more nuanced. In particular, eliminating the binding of
the name in the outer scope should replace the use of name a on line 6 but not the use of
name a on 5. In particular, applying the environment [a ↦ 1, b ↦ 2] to lines 3 to 4 yields the
following:

32

val c = {
val a = 3
a + 2

} + 1

c: Int = 6

4.2.2 Free versus Bound Variables

This notion of substitution is directly linked to the terms free and bound variables. In any
given expression 𝑒, a bound variable is one whose binding location is in 𝑒, while a free variable
is one whose binding location is not in 𝑒. For example, in the expression { val x = 3; x +
y }, variable x is bound, while variable y is free:

{
{ val x = 3; x + y }

}

cmd9.sc:1: not found: value y
val res9 = { val x = 3; x + y }

^Compilation Failed

:
Compilation Failed

Note that as an aside about Scala syntax, the ; sequences expressions, which are inferred when
using newlines:

{
{ val x = 3

x + y }
}

cmd9.sc:2: not found: value y
x + y }

^Compilation Failed

:
Compilation Failed

33

We can see free variables as inputs to an expression: we do not know how to evaluate it without
an environment giving bindings.

Consider again the example of renaming to eliminate shadowing in Figure 4.2. A key property
to observe is that when looking at a sub-expression, we can rename the bound variables
consistently to a semantically equivalent one, but we cannot rename the free variables.

A closed expression is one that has no free variables, which is then one that can be evaluated
with an empty environment:

{
{ val y = 4; { val x = 3; x + y } }

}

res9: Int = 7

An open expression is one that has at least one free variable (and thus cannot be evaluated
with an empty environment).

4.3 Mutable Variables

In the above, we are using the term variable in the same sense as in mathematical logic
where variables are placeholder names and immutable. However, in the context of imperative
programming, the notion of a program variable is often, by default, considered a name for a
mutable memory cell.

Just like many other languages (including JavaScript, Java, C), Scala has both immutable and
mutable variables.

Language Immutable Variable Declaration Mutable Variable Declaration
Scala val one = 1 var one = 1
JavaScript const one = 1 var one = 1
Java final int one = 1 int one = 1
C const int one = 1 int one = 1

A mutable variable allocates a memory cell that can be assigned:

34

var greeting = "Hello"
println(greeting)
greeting = "Hi"
println(greeting)
greeting = "Hola"
println(greeting)

Hello
Hi
Hola

greeting: String = "Hola"

where the value stored in the cell depends on when it is read.

There are many reasons why we might prefer val. One reason is understandability of the
source code. As we see from the above, using var breaks referential transparency of variable
use (e.g., the value that the expression greeting evaluates to depends on when it runs).

Another reason is getting more efficient executable code from the compiler. A mutable requires
a new memory allocation for each time it executes, whereas a reference to an immutable can
be shared aggressively.

4.4 Functions and Tuples

4.4.1 Function Definitions

The most basic and perhaps most important form of abstraction in programming languages is
defining functions. Here’s an example Scala function:

def square(x: Int): Int = x * x

defined function square

where x is a formal parameter of type for the function that returns a value of type Int.
Schematically, a function definition has the following form:

def 𝑥(𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛): 𝜏 = 𝑒

35

where the formal parameter types 𝜏1, … , 𝜏𝑛 are always required and the return type 𝜏 is
sometimes required.1 However, we adopt the convention of always giving the return type.
This convention is good practice in documenting function interfaces, and it saves us from
worrying about when Scala actually requires or does not require it.

Note that braces {} are not part of the syntax of a def. For example, the following code is
valid:

def max(x: Int, y: Int): Int =
if (x > y)

x
else

y

defined function max

As a convention, we will not use {} unless we need to introduce bindings.

4.4.2 First-Class Functions

Functions are values in Scala. That is, expressions can evaluate to values that are functions.
Functions are values is sometimes stated as, “Functions are first-class in Scala.”

A function literal defines an anonymous function:

(x: Int) => x * x

res13: Int => Int = ammonite.$sess.cmd13$Helper$$Lambda$1997/0x0000000800acf040@1f40f380

We can see that a function taking a formal parameter of type Int and returning a value of
type Int is written Int => Int.

For historical reasons referencing the Lambda Calculus, function values are sometimes called
lambdas.

As values, we can bind functions to variables:

val square = (x: Int) => x * x

1Scala is also an object-oriented language, and this syntax actually introduces a method. Fortunately, in most
situations, methods can be treated like functions in Scala.

36

square: Int => Int = ammonite.$sess.cmd14$Helper$$Lambda$2006/0x0000000800ad4840@69cd8b89

If the type of the formal parameters are clear from context, they can be inferred:

val square: Int => Int = x => x * x

square: Int => Int = ammonite.$sess.cmd15$Helper$$Lambda$2010/0x0000000800ad7040@46593b21

Note that it is a common style to put braces {} around function literals to make them stand
out more visually, even if there’s no need to introduces bindings:

val square: Int => Int = { x => x * x }

square: Int => Int = ammonite.$sess.cmd16$Helper$$Lambda$2014/0x0000000800ad9840@11ee4343

An expression defining a function can refer to variables bound in an outer scope:

val four = 4
def plusFour(x: Int): Int = x + four
plusFour(4)

four: Int = 4
defined function plusFour
res17_2: Int = 8

Referencing a detail needed to properly implement static scoping with such functions that
can refer to variables bound in an outer scope, first-class functions are also sometimes called
closures.

NB The return keyword does exist in Scala but is rarely used and generally considered bad
practice. For the purposes of this course, we should also avoid using return, as it can lead to
unexpected results without a deeper knowledge about Scala internals.

4.4.3 Tuples

A tuple is a simple data structure that combines a fixed number of values. It is a value that is
a pair, triple, quadruple, etc. of values:

37

val oneT = (1, true)

oneT: (Int, Boolean) = (1, true)

That is, a pair is a 2-tuple, a triple is a 3-tuple, a quadruple is a 4-tuple and so forth.

A 𝑛-tuple expression annotated with a 𝑛-tuple type is written as follows:

(𝑒1, … , 𝑒𝑛): (𝜏1, … , 𝜏𝑛) .

4.4.3.1 Functions Returning Multiple Associated Values

Tuples are often used with functions to return multiple values or to pass around a small number
of associated values together. It is generally used when defining a custom data type for a single
use does not really make sense, and it is generally advisable not to use tuples larger than 4-
or 5-tuples.

As example of a function returning multiple associated values, we can write a function that
takes two integers and and returns a pair of their quotient and their remainder:

def divRem(x: Int, y: Int): (Int, Int) = (x / y, x % y)

defined function divRem

4.4.3.2 Deconstructing Tuples with Pattern Matching

The 𝑖th component of a tuple 𝑒 can be obtained using the expression 𝑒._𝑖 (invoking the 𝑖th

projection method). For example,

val divRemSevenThree: (Int, Int) = divRem(7, 3)
val div: Int = divRemSevenThree._1
val rem: Int = divRemSevenThree._2

divRemSevenThree: (Int, Int) = (2, 1)
div: Int = 2
rem: Int = 1

However, it much more common and almost always clearer to get the components of a tuple
using pattern matching:

38

val (div, rem) = divRem(7, 3)

div: Int = 2
rem: Int = 1

Note that the bottom line is a binding of two names div and rem, which are bound to the first
and second components of the tuple returned by evaluating divRem(7,3), respectively. The
parentheses () are necessary in the code above.

If we do not need one part of the pair, we can use the _ pattern:

val (div, _) = divRem(7, 3)

div: Int = 2

4.4.3.3 Side-Effecting Functions

There is no 1-tuple type, but there is a 0-tuple type that is called Unit (see Section 3.2.3).
There is only one value of type (also typically called the unit value). The unit value is written
using the expression () (i.e., open-close parentheses), as it is the 0-tuple.

As noted in Section 3.2.3, a good indication of imperative programming are when expressions
return Unit. Conceptually, the unit value represents “nothing interesting returned.” When we
introduce side-effects, a function with return type is a good indication that its only purpose
is to be executed for side effects because “nothing interesting” is returned. A block that does
not have a final expression (e.g., only has declarations) returns the unit value:

val u: Unit = { }

Scala has an alternative syntax for functions that have a Unit return type:

def doNothing() { }

defined function doNothing

Specifically, the = is dropped and no type annotation is needed for the return type since it is
fixed to be Unit. This syntax makes imperative Scala code look a bit more like C or Java
code.

39

4.4.4 Pattern Matching

Another workhorse of defining functions in a functional programming language is pattern
matching. We have seen pattern matching to deconstruct tuples (Section 4.4.3.2), such as

def fst(pair: (Int, Boolean)): Int = {
val (i, _) = pair
i

}
fst(3, true)

defined function fst
res25_1: Int = 3

4.4.4.1 Nested Pattern Matching

Patterns can match deeply, which is particularly powerful.

val (_, (i, _)) = (3.14, (42, true))

i: Int = 42

4.4.4.2 Heterogenous Pattern Matching

For tuples, we can pattern match with val because the shape of tuples is homogenous. Pattern
matching can also be used when there are multiple possible cases, such as

def isZero(n: Int): Boolean = n match {
case 0 => true
case _ => false

}
isZero(10)

defined function isZero
res27_1: Boolean = false

Observe that one possible pattern is a value: 0 in this example.

Cases are attempted from top-to-bottom, so it is important to order more specific patterns
before less specific ones:

40

def isZero(n: Int): Boolean = n match {
case _ => false
case 0 => true

}
isZero(0)

defined function isZero
res28_1: Boolean = false

And it is possible that a run-time error results when no cases match:

def isZero(n: Int): Boolean = n match {
case 0 => true

}
isZero(10)
:::

The `val`{.scala} pattern matching is then just a special case:

::: {.cell execution_count=36}
``` {.scala .cell-code}
def fst(pair: (Int, Boolean)): Int = pair match {

case (i, _) => i
}
fst(3, true)

defined function fst
res30_1: Int = 3

4.5 String Interpolation

While this is not a core language feature, Scala has convenient string construction facilities for
constructing strings that can be useful for writing debugging logs.

There are C printf-style format strings:

def helloWorld(greeting: String): String = "%s, World!" format greeting
helloWorld("Hello")
helloWorld("Hi")

41



defined function helloWorld
res31_1: String = "Hello, World!"
res31_2: String = "Hi, World!"

But even more convenient, there is a macro s for string interpolation:

def helloWorld(greeting: String): String = s"$greeting, World!"
helloWorld("Hello")
helloWorld("Hi")

defined function helloWorld
res32_1: String = "Hello, World!"
res32_2: String = "Hi, World!"

That is, the $ in the string template informs Scala to evaluate the expression greeting. For
a more complex expression than a variable use, use braces ${}:

def helloWorld(greeting: String): String = s"${greeting.toLowerCase}, World!"
helloWorld("Hello")
helloWorld("Hi")

defined function helloWorld
res33_1: String = "hello, World!"
res33_2: String = "hi, World!"

We can update the example of inspecting how Scala evaluates from Section 3.3 with a bit more
information:

def printeval(indent: String, e: String, v: Int): Int =
{ println(s"${indent}eval($e) = $v"); v }

printeval("", "(1 + 2) + (3 + 4)", {
printeval("- if ", "1 + 2", {

printeval(" - if ", "1", 1) +
printeval(" - if ", "2", 2)

}) +
printeval("- if ", "3 + 4", {

printeval(" - if ", "3", 3) +
printeval(" - if ", "4", 4)

})
})

42



- if eval(1) = 1
- if eval(2) = 2

- if eval(1 + 2) = 3
- if eval(3) = 3
- if eval(4) = 4

- if eval(3 + 4) = 7
eval((1 + 2) + (3 + 4)) = 10

defined function printeval
res34_1: Int = 10

To print the evaluation of the expression with its resulting value, we now print out the post-
order traversal of the evaluation tree versus the pre-order traversal in Section 3.3.

Note that we need to take some care in preserving the structure of the expression
(1 + 2) + (3 + 4) to test the evaluation order. The expression { val r = 3 + 4; (1 + 2) + r }
is semantically equivalent to the first one with respect to their values but not evaluation
order:

val r = {
printeval("- if ", "3 + 4", {

printeval(" - if ", "3", 3) +
printeval(" - if ", "4", 4)

})
}
printeval("", "(1 + 2) + (3 + 4)", {
printeval("- if ", "1 + 2", {

printeval(" - if ", "1", 1) +
printeval(" - if ", "2", 2)

}) + r
})

- if eval(3) = 3
- if eval(4) = 4

- if eval(3 + 4) = 7
- if eval(1) = 1
- if eval(2) = 2

- if eval(1 + 2) = 3
eval((1 + 2) + (3 + 4)) = 10

r: Int = 7
res35_1: Int = 10

43



5 Exercise: Binding and Scope

The purpose of this exercise is to warm up on the concepts of binding and scope, by example,
in Scala.

For each the following uses of variable names, give the line where that name is bound. Briefly
explain your reasoning (in no more than 1–2 sentences).

5.1 Example 1

Consider the following Scala code:

1 val pi = 3.14
2 def circumference(r: Double): Double = {
3 val pi = 3.14159
4 2.0 * pi * r
5 }
6 def area(r: Double): Double =
7 pi * r * r

pi: Double = 3.14
defined function circumference
defined function area

If you are viewing this in Jupyter, you may need to enable line numbers (via View > Show
Line Numbers).

Exercise 5.1. The use of pi at line 4 is bound at which line? Briefly explain.

???

Exercise 5.2. The use of pi at line 7 is bound at which line? Briefly explain.

???

44



5.2 Example 2

Consider the following Scala code:

1 val x = 3
2 def f(x: Int): Int =
3 x match {
4 case 0 => 0
5 case x => {
6 val y = x + 1
7 ({
8 val x = y + 1
9 y

10 } * f(x - 1))
11 }
12 }
13 val y = x + f(x)

x: Int = 3
defined function f
y: Int = 3

Exercise 5.3. The use of x at line 3 is bound at which line? Briefly explain.

???

Exercise 5.4. The use of x at line 6 is bound at which line? Briefly explain.

???

Exercise 5.5. The use of x at line 10 is bound at which line? Briefly explain.

???

Exercise 5.6. The uses of x at line 13 is bound at which line? Briefly explain.

???

45



6 Data Types

6.1 Standard Collections

We have already seen one standard data type in tuples (see Section 4.4.3).

6.1.1 Lists

After tuples, the most commonly-used standard data type is probably List. A List is a
sequential, functional data structure.

val numbers = List(1, 2, 3)
numbers.length

numbers: List[Int] = List(1, 2, 3)
res0_1: Int = 3

Like tuples, the List type constructor is parametrized by another type. In the above, we have
that numbers is bound to a value of type List[Int], that is, a list of integers. A list of strings
would have type List[String].

6.1.1.1 Indexing

While it is very uncommon to do so, it is possible to index into lists:

numbers(0)
numbers(1)
numbers(2)

res1_0: Int = 1
res1_1: Int = 2
res1_2: Int = 3

46



numbers(3)

Another way for getting the first element is getting the head of the list:

numbers.head

res3: Int = 1

Scalaism: As all operators in Scala are methods, the expression numbers(0) is syntactic sugar
for a method call to apply:

numbers.apply(0)

res4: Int = 1

6.1.1.2 Nil and Cons

An empty list can also be written as Nil

val empty: List[Int] = List()
val nil: List[Int] = Nil

empty: List[Int] = List()
nil: List[Int] = List()

We can then prepend to a list with :: as follows:

val numbers = List(1, 2, 3)
val consZero = 0 :: numbers
val consTen = 10 :: numbers
val numbersHead = numbers.head
val consZeroHead = consZero.head
val consTenHead = consTen.head

numbers: List[Int] = List(1, 2, 3)
consZero: List[Int] = List(0, 1, 2, 3)
consTen: List[Int] = List(10, 1, 2, 3)
numbersHead: Int = 1
consZeroHead: Int = 0
consTenHead: Int = 10

47



Note that there is no imperative update here. A List is an immutable, functional data
structure. An immutable, functional data Prepending to numbers does not change it. Rather
consZero and consTen are bound to new lists.

Recall from Section 4.3, the note about immutablility enabling efficient representations. Be-
cause Lists are immutable, prepending is still a constant-time operation (i.e., 𝑂(1)). The
consZero and consTen can share the same tail (i.e., numbers), that is, only 5 nodes are
needed in total to represent the lists numbers, consZero, and consTen:

val consZeroTail = consZero.tail
val consTenTail = consTen.tail
consZeroTail eq consTenTail
numbers eq consZeroTail
numbers eq List(1, 2, 3)
numbers == List(1, 2, 3)

consZeroTail: List[Int] = List(1, 2, 3)
consTenTail: List[Int] = List(1, 2, 3)
res7_2: Boolean = true
res7_3: Boolean = true
res7_4: Boolean = false
res7_5: Boolean = true

where in Scala, eq is the reference equality operator, while == is structural equality.

Note that the List(1, 2, 3) constructor is equivalent to the following:

val numbers = 1 :: 2 :: 3 :: Nil

numbers: List[Int] = List(1, 2, 3)

The :: operator is often read as “cons”, referencing historically the name cons in Lisp for
the primitive that constructs a cell with two values. Note that :: is a right-associative binary
operator, so it is parsed as like

val numbers = 1 :: (2 :: (3 :: Nil))
Nil.::(3).::(2).::(1)

numbers: List[Int] = List(1, 2, 3)
res9_1: List[Int] = List(1, 2, 3)

48



and as with other binary operators, it is just syntactic sugar for method call.

It is quite common to work with lists directly using pattern matching on Nil or :::

def isEmpty(l: List[Int]): Boolean = l match {
case Nil => true
case head :: tail => false

}
isEmpty(numbers)

defined function isEmpty
res10_1: Boolean = false

Note that the List API also defines a method ::: for appending two lists together:

val numbers = List(1, 2, 3)
numbers ::: List(4, 5, 6)

numbers: List[Int] = List(1, 2, 3)
res11_1: List[Int] = List(1, 2, 3, 4, 5, 6)

The append method ::: is a linear-time operation in the length of its left argument (i.e.,
𝑂(numbers.length) in this example). Why must this be the case?

6.1.1.3 Immutability

As noted above, a List is an immutable, functional data structure.

numbers(1) = 20

cmd12.sc:1: value update is not a member of List[Int]
did you mean updated?
val res12 = numbers(1) = 20

^Compilation Failed

:
Compilation Failed

While it is not common to use this method, the closest analogue is return a new list that is
the original list element at index 1 updated:

49



val numbers_ = numbers.updated(1, 20)

numbers_: List[Int] = List(1, 20, 3)

6.1.1.4 Iterators

While it is also not common to use, a for loop in Scala enables iteration through a List:

for (n <- numbers) println(n)

1
2
3

A for loop in Scala is actually syntactic sugar for a method call to a higher-order method
foreach:

numbers foreach { n => println(n) }

1
2
3

We call foreach higher-order, as it takes a function as a parameter of type Int => Unit (e.g.,
{ n => println(n) } in the above example). The function parameter, sometimes called a
callback, describes what to do for each element of the list.

Note that println is a function that conforms to Int => Unit, so we could pass it directly:

numbers.foreach(println)

1
2
3

Higher-order methods are the most common way to use Lists. However, foreach is less used
than others, as the callback of type Int => Unit must inherently be imperative to do anything
interesting. Why? Consider the type of the function we get that awaits receiving the callback
to foreach:

50



val awaitingCallback: (Int => Unit) => Unit = numbers.foreach(_)
awaitingCallback(println)

1
2
3

awaitingCallback: Int => Unit => Unit = ammonite.$sess.cmd16$Helper$$Lambda$2150/0x0000000800b46840@2223c63d

In the above, read numbers.foreach(_) more like numbers.foreach. The extra (_) is a
low-level Scalaism to convert a method into a function that is only needed for this explanation
and rarely needed in practice.

6.1.1.4.1 Functional Traversals

Or as another example, consider trying to write a function sum that sums up a list of integers
List[Int] with a for loop or foreach:

def sum(l: List[Int]): Int = {
var acc = 0
for (n <- l) acc += n
acc

}
sum(numbers)

defined function sum
res17_1: Int = 6

The only way to remember the accumulated sum so far is with a mutable variable var acc.

Instead, the idiomatic way to compute such a sum is to use another higher-order method that
permits accumulation in a functional manner, such as reduce:

def sum(l: List[Int]): Int = l reduce { (acc, n) => acc + n }
sum(numbers)

defined function sum
res18_1: Int = 6

Not only does the sum definition become a one-liner, but it decouples the scheduling of work
on each element of the list and lets the library implement that (e.g., sequentially left-to-right,
concurrently, or even distributed!).

51



6.1.1.4.2 Placeholder Syntax for Function Literals

While not necessarily recommended, one might sometimes see an alternative Scala syntax for
function literals using placeholders _:

def sum(l: List[Int]): Int = l.reduce(_ + _)
sum(numbers)

defined function sum
res19_1: Int = 6

Each placeholder _ corresponds to a formal parameter, so _ + _ is syntactic sugar for
(x,y) => x + y. Like with any diet, take sugar in moderation.

6.1.1.4.3 Composing Higher-Order Methods

We will consider in subsequent chapters how to effectively use such higher-order methods. For
the moment, simply recognize that such higher-order methods exist and is the idiomatic way
to work with Lists. Furthermore, this API design is particularly powerful and becoming
commonplace in almost all languages (even in Java!). For example, in big-data applications,
this design enables streaming where the data can be consumed in an online manner as a stream.
Consider the following for a taste:

val l = List(1, 2, 3, 4, 5, 6)
val sumEvens = l filter { i => i % 2 == 0 } reduce { (acc, n) => acc + n }

l: List[Int] = List(1, 2, 3, 4, 5, 6)
sumEvens: Int = 12

Or,

val sumEvens = l.filter(_ % 2 == 0).reduce(_ + _)

sumEvens: Int = 12

6.1.1.4.4 Object-Oriented Iterators

The foreach method is an abstraction of the object-oriented Iterator Pattern:

52



val it = numbers.iterator
while (it.hasNext) {

val n = it.next()
println(n)

}

1
2
3

it: Iterator[Int] = empty iterator

In essence, the foreach method uses the callback parameter to allow the client to specify
the body of the while loop. A benefit is that common programming errors in using such
an object-oriented API—like calling it.next() after the it has no more elements—cannot
happen when using foreach.

it.next()

6.1.1.5 API Documentation

As alluded to above, Scala has a rich API for Lists. Such libraries are designed to be extremely
generic for many use cases, so they necessarily have a fair amount of complexity. Nonetheless,
it is worthwhile getting used to reading such API documentation.

6.1.1.6 Arrays

A List is a immutable, functional sequential collection of elements of the same type (i.e., a
singly-linked list), while an Array is a fixed-size, mutable indexable collection of elements of
the same type. In this course, we have little need for Array, but it exists in Scala for particular
use cases.

6.1.2 Options

Another commonly used built-in data type is Option. It is either a None for or a Some of some
value:

53

https://www.scala-lang.org/api/2.13.14/scala/collection/immutable/List.html


val none: Option[Int] = None
val some: Option[Int] = Some(42)

none: Option[Int] = None
some: Option[Int] = Some(value = 42)

Or, using some API methods on Option:

val none: Option[Int] = Option.empty
val some: Option[Int] = Option(42)

none: Option[Int] = None
some: Option[Int] = Some(value = 42)

The Option type is useful for methods that may optionally return a value (i.e., would error in
some cases).

For example, we may want to define a division method that returns None if the client attempts
to divide by zero:

def div(n: Int, m: Int): Option[Int] = m match {
case 0 => None
case _ => Some(n / m)

}

defined function div

Or, as another example, the head method for Lists errors if the input list is empty:

val emptyList: List[Int] = Nil

emptyList: List[Int] = List()

val h: Int = emptyList.head

Instead, the headOption method returns an Option using None for an empty list and Some for
a non-empty list:

54



val h: Option[Int] = emptyList.headOption

h: Option[Int] = None

We can then work with options also using pattern matching:

def head(l: List[Int]): Option[Int] = l match {
case Nil => None
case h :: _ => Some(h)

}
head(List(1, 2, 3))

defined function head
res30_1: Option[Int] = Some(value = 1)

We can think of an Option value as a 0-or-1 element list and thus all of the higher-order
iteration methods are available:

some.foreach(println)

42

6.1.3 Maps

Maps are particularly useful data structures for storing associations between keys and val-
ues. For example, we describe value environments for a programming language as maps from
variables to values in Section 4.1.1.

type Env = Map[String,Int]
val env: Env = Map("nOranges" -> 4, "nApples" -> 7, "nPears" -> 10)

defined type Env
env: Env = Map("nOranges" -> 4, "nApples" -> 7, "nPears" -> 10)

We can lookup in maps based on a key:

55



env("nApples")
env.apply("nApples")

res33_0: Int = 7
res33_1: Int = 7

env("nDogs")

As we see above, since a given key may not exist in a map, there is a get method that instead
returns an Option:

env contains "nApples"
env get "nApples"
env contains "nDogs"
env get "nDogs"

res35_0: Boolean = true
res35_1: Option[Int] = Some(value = 7)
res35_2: Boolean = false
res35_3: Option[Int] = None

Another commonly-used alterative to apply and get for lookup in a map is getOrElse that
takes an extra parameter for what to return in the case that the key does not exist:

env getOrElse ("nDogs", 0)

res36: Int = 0

Finally, we often want to extend maps:

val env_ = env + ("nBananas" -> 17)

env_: Map[String, Int] = Map(
"nOranges" -> 4,
"nApples" -> 7,
"nPears" -> 10,
"nBananas" -> 17

)

56



Note that just like with List, the above is a “functional update” that returns a new Map where
env still exists:

env
env_

res38_0: Env = Map("nOranges" -> 4, "nApples" -> 7, "nPears" -> 10)
res38_1: Map[String, Int] = Map(
"nOranges" -> 4,
"nApples" -> 7,
"nPears" -> 10,
"nBananas" -> 17

)

A functional update is sometimes where one might want to intentionally shadow (i.e., write
val env = env + ("nBananas" -> 17) in the above) to prevent referencing the unextended
env in a particular scope.

We use the -> operator with maps for visual clarity, but it is actually not special. It is just an
alias for constructing pairs:

"nBananas" -> 17

res39: (String, Int) = ("nBananas", 17)

val env_ = env + (("nBananas", 17))

env_: Map[String, Int] = Map(
"nOranges" -> 4,
"nApples" -> 7,
"nPears" -> 10,
"nBananas" -> 17

)

As a collection in the standard library, Map also has the usual higher-order iteration methods,
such as

env.foreach(println)

(nOranges,4)
(nApples,7)
(nPears,10)

57



6.1.4 Sets

The Scala standard library has many other core functional data structures. Another commonly
used one is the Set data structure that keeps a single copy of each element while supporting
fast membership testing, union, intersection, and iteration operations.

6.2 Classes

Scala is also an object-oriented language where code and data can be encapsulated together.
A class declaration introduces a new type name, specifies data that it packages together, and
defines methods that operate on that data:

1 class Dog(name: String, breed: String, age: Int) {
2 override def toString =
3 s"Woof! My name is $name, I am a $breed, and I am $age years old."
4 }
5 val samuel = new Dog("Samuel", "Alsatian", 11)
6 val bo = new Dog("Bo", "Portuguese Water Dog", 10)
7 samuel.toString

defined class Dog
samuel: Dog = Woof! My name is Samuel, I am a Alsatian, and I am 11 years old.
bo: Dog = Woof! My name is Bo, I am a Portuguese Water Dog, and I am 10 years old.
res42_3: String = "Woof! My name is Samuel, I am a Alsatian, and I am 11 years old."

In the above, we define a method toString that overrides the default toString method that
is defined for all objects—that we can see is used as the printer above.

We can see that defining classes in Scala is quite convenient, eliminating a lot of the repetitive
boilerplate code with constructors, field declarations, etc. seen in, for example, Java and
C++.

Scala has a shorthand for defining a class with single instance (sometimes called a singleton)
with the object keyword:

object Dog {
def birth(name: String, breed: String): Dog =

new Dog(name, breed, 0)
}
val sadie = Dog.birth("Sadie", "Pointer")
sadie.toString

58



defined object Dog
sadie: Dog = Woof! My name is Sadie, I am a Pointer, and I am 0 years old.
res43_2: String = "Woof! My name is Sadie, I am a Pointer, and I am 0 years old."

A object is like a module with function definitions, type definitions, etc. If an object has
the same name as a class in the same file, then it is the companion object for the class and
has special accessibility to that class’s instances.

6.2.1 Data Classes

In relation to Java or C++, we can see the parameters to the class on line 1 as the parameter
list to the constructor to create private fields with the same name that are accessible by
methods. However, those fields are not accessible outside of the class’s methods:

samuel.name

cmd44.sc:1: value name is not a member of cmd44.this.cmd42.Dog
val res44 = samuel.name

^Compilation Failed

:
Compilation Failed

Often, we just want classes that store associated data together. If the fields are immutable, it
is perfectly acceptable for them to be accessible. We can do so as follows to make public val
fields:

class Dog(val name: String, val breed: String, val age: Int)
val samuel = new Dog("Samuel", "Alsatian", 11)
samuel.name

defined class Dog
samuel: Dog = ammonite.$sess.cmd44$Helper$Dog@15f44dcf
res44_2: String = "Samuel"

However, in this case, we would like to treat the Dog just like a specialized tuple and use things
like pattern matching, but we can’t

59



val Dog(name, _, _) = samuel

cmd45.sc:1: object Dog is not a case class, nor does it have a valid unapply/unapplySeq member
val Dog(name, _, _) = samuel

^Compilation Failed

:
Compilation Failed

We can do so by making Dog a case class:

case class Dog(name: String, breed: String, age: Int)
val samuel = Dog("Samuel", "Alsatian", 11)
samuel.name
val Dog(_, breed, _) = samuel

defined class Dog
samuel: Dog = Dog(name = "Samuel", breed = "Alsatian", age = 11)
res45_2: String = "Samuel"
breed: String = "Alsatian"

We can think of a case class as a “functional class” used for storing immutable data. We
can define methods on such classes as well, but that is somewhat secondary.

6.3 Algebraic Data Types

In addition to a tuples grouping associated data together, we want to be able to define alter-
natives:

trait Pet
case class Dog(name: String, breed: String) extends Pet
case class Cat(name: String, breed: String) extends Pet

def greet(pet: Pet): String = pet match {
case Dog(name, _) => s"Woof, $name!"
case Cat(name, _) => s"Meow, $name!"

}

greet(Dog("Samuel", "Altsatian"))
greet(Cat("Jenkins", "Siamese"))

60



defined trait Pet
defined class Dog
defined class Cat
defined function greet
res46_4: String = "Woof, Samuel!"
res46_5: String = "Meow, Jenkins!"

A trait introduces a new type name and is roughly a class interface. In the above, Dog and
Cat can be both be a Pet. The greet function takes as input a Pet and uses pattern matching
to distinguish whether it is a Dog or a Cat.

Pet in the above example is a very simple algebraic data type. As an aside, an algebraic data
type is named such because it combines products of data (i.e., tuples) and sums of data (i.e.,
cases).

6.3.1 Option

The built-in collection types Option and List described above are both algebraic data types.
Consider the following Option-like definition:

sealed trait MyOption
case object MyNone extends MyOption
case class MySome(i: Int) extends MyOption

val none: MyOption = MyNone
val some: MyOption = MySome(42)

def getOrElse(o: MyOption, default: Int): Int = o match {
case MyNone => default
case MySome(i) => i

}

getOrElse(none, 0)
getOrElse(some, 0)

defined trait MyOption
defined object MyNone
defined class MySome
none: MyOption = MyNone
some: MyOption = MySome(i = 42)
defined function getOrElse
res47_6: Int = 0

61



res47_7: Int = 42

One new thing to note is the sealed qualifier, which says that all the classes that derive from
MyOption (i.e., the alternatives) are defined here, so the programmer and compiler do not need
to worry about other possible cases for MyOption.

Algebraic data types can also be recursive. Recursive data types is exemplified by Lists, which
we revisit subsequentlyin ?@sec-recursion.

6.3.2 Parametric Polymorphism

One difference between the built-in Option and MyOption in the above is that Option is
parametrized by a type of the value that may or may not exist. We can extend our definition
of MyOption with a type parameter A as follows:

sealed trait MyOption[A]
case class MyNone[A]() extends MyOption[A]
case class MySome[A](v: A) extends MyOption[A]

val none: MyOption[Int] = MyNone()
val some: MyOption[Int] = MySome(42)

def getOrElse[A](o: MyOption[A], default: A): A = o match {
case MyNone() => default
case MySome(v) => v

}

getOrElse(none, 0)
getOrElse(some, 0)

defined trait MyOption
defined class MyNone
defined class MySome
none: MyOption[Int] = MyNone()
some: MyOption[Int] = MySome(v = 42)
defined function getOrElse
res48_6: Int = 0
res48_7: Int = 42

Observe that getOrElse (as well as the MyNone and MySome constructors) have a type param-
eter list (written brackets []) and a value parameter list (written in parentheses ()).

62



The getOrElse function is generic in the parametrized type A. Being generic, the getOrElse
function is also called parametric polymorphic.

Note that MyOption is not quite the same definition as Option, but it is close.

63



7 Exercise: Expressions and Data Types

The purpose of this assignment is to warm-up with Scala.

Learning Goals

The primary learning goals of this assignment are to build intuition for the following:

• thinking in terms of types, values, and expressions; and
• imperative iteration.

Instructions

This assignment asks you to write Scala code. There are restrictions associated with how you
can solve these problems. Please pay careful heed to those. If you are unsure, ask the course
staff.

Note that ??? indicates that there is a missing function or code fragment that needs to be
filled in. In Scala, it is also an expression that throws a NotImplementedError exception.
Make sure that you remove the ??? and replace it with the answer.

Use the test cases provided to test your implementations. You are also encouraged to write
your own test cases to help debug your work. However, please delete any extra cells you may
have created lest they break an autograder.

7.1 Type Checking

In the following, I have left off the return type of function g. The body of g is well-typed if
we can come up with a valid return type. In this question, we will reason for ourselves that g
is indeed well-typed.

64



1 def g(x: Int) = /*e1*/({
2 // env1
3 val (a, b) = /*e2*/(
4 // env2
5 (1, (x, 3))
6 )
7 /*e3*/(
8 // env3
9 if (x == 0) (b, 1) else (b, a + 2)

10 )
11 })

defined function g

We have added parentheses around 3 key sub-expressions of the body of g (e.g., /*e1*/(…))
and noted that there are corresponding environments (e.g., // env1 for each sub-expression).

Exercise 7.1 (2 points). What is the type environment env1? Briefly explain.

Use either format shown in Section 4.1.1 (e.g., [𝑥1 ∶ 𝜏1, … , 𝑥𝑛 ∶ 𝜏𝑛]).
???

Exercise 7.2 (2 points). What is the type environment env2? Briefly explain.

???

Exercise 7.3 (10 points). Derive the type of expression e2.

Showing the type for each sub-expression of e2; stop when you reach literals or variable uses.

???

Notes

Use the format shown in Section 3.2.1. . Here’s such a derivation for the type of the expression
(1 + 2) + (3 + 4).

65



(1 + 2) + (3 + 4): Int
- if 1 + 2: Int
- if 1: Int
- if 2: Int

- if 3 + 4: Int
- if 3: Int
- if 4: Int

Exercise 7.4 (2 points). What is the type environment env3? Briefly explain.

???

Exercise 7.5 (2 points). Derive the type of expression e3. {.unnumbered}

???

Exercise 7.6 (9 points). Confirm your derivations by adding type assertions to each sub-
expression of g and adding the return type of g.

That is, replace sub-expressions 𝑒 of g with expressions 𝑒 : 𝜏 . You may need to add some
parentheses—( 𝑒 : 𝜏 )—to preserve the syntactic structure. Skip adding typing assertions for
literals and variable uses.

Edit this cell:

def g(x: Int) = /*e1*/({
// env1
val (a, b) = /*e2*/(

// env2
(1, (x, 3))

)
/*e3*/(

// env3
if (x == 0) (b, 1) else (b, a + 2)

)
})

defined function g

???

Hint: There are 8 sub-expressions that are not literals nor variable uses that need typing
assertions (i.e., 𝑒 : 𝜏), plus 1 more annotation for the return type of g.

66



7.2 Unit Testing

When starting to program in the large, it is useful to use a testing framework to manage tests
and integrate with IDEs. One that is commonly used in Scala is ScalaTest.

While it is somewhat overkill for testing small exercises like the ones to come, we practice here
writing tests using ScalaTest.

To load the ScalaTest library, run the following cell:

// RUN this cell FIRST before testing
import $ivy.`org.scalatest::scalatest:3.2.19`, org.scalatest._, events._, flatspec._
def report(suite: Suite) = suite.execute(stats = true)
def assertPassed(suite: Suite) =
suite.run(None, Args(new Reporter {

def apply(e: Event) = e match {
case e @ (_: TestFailed) => assert(false, s"${e.message} (${e.testName})")
case _ => ()

}
}))

def test(suite: Suite) = {
report(suite)
assertPassed(suite)

}

import $ivy.$ , org.scalatest._, events._, flatspec._

defined function report
defined function assertPassed
defined function test

Exercise 7.7 (3 points). Unit Test plus. For this question, edit the next two code cells
to fix the implementation of plus and add the appropriate assertion for the third test case
"add (3,4) == 7".

Our goal is unit test the following complicated function (that we’ve gotten wrong!):

def plus(n: Int, m: Int): Int =
???

defined function plus

67

https://www.scalatest.org/


To use ScalaTest, we create “Spec” objects using ScalaTest methods like should that define
an embedded domain-specific language (DSL) for defining tests:

val plusSuite = new AnyFlatSpec {
// Define a *subject* to test (e.g., "plus").
// After `should`, name a test (e.g, "add (1, 1) == 2").
// After `in`, specify assertions (e.g., `assert(plus(1,1) == 2))
"plus" should "add 1 + 1 == 2" in {

// Specify assertions here.
assert(plus(1,1) == 2)

}

it should "add 2 + 2 == 4" in {
// It is convenient to distinguish the expected result from the code that
// you're testing, which affects the error messages when the test fails.
assertResult(2 + 2) {
plus(2,2)

}
}

it should "add 3 + 4 == 7" in {
???

}
}
report(plusSuite)

Run starting. Expected test count is: 3
cmd4$Helper$$anon$1:
plus
- should add 1 + 1 == 2 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd3$Helper.plus(cmd3.sc:2)
at ammonite.$sess.cmd4$Helper$$anon$1.$anonfun$new$1(cmd4.sc:7)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

68



- should add 2 + 2 == 4 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd3$Helper.plus(cmd3.sc:2)
at ammonite.$sess.cmd4$Helper$$anon$1.$anonfun$new$2(cmd4.sc:14)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

- should add 3 + 4 == 7 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd4$Helper$$anon$1.$anonfun$new$3(cmd4.sc:19)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
at org.scalatest.TestSuite.withFixture$(TestSuite.scala:195)
...

Run completed in 71 milliseconds.
Total number of tests run: 3
Suites: completed 1, aborted 0
Tests: succeeded 0, failed 3, canceled 0, ignored 0, pending 0
*** 3 TESTS FAILED ***

plusSuite: AnyFlatSpec = cmd4$Helper$$anon$1

???

7.3 Run-Time Library

Most languages come with a standard library with support for things like data structures,
mathematical operators, string processing, etc. Standard library functions may be imple-

69



mented in the object language (perhaps for portability) or the meta language (perhaps for
implementation efficiency).

For this question, we will implement some library functions in Scala, our meta language, that
we can imagine will be part of the run-time for our object language interpreter. In actuality,
the main purpose of this exercise is to warm-up with Scala programming.

Exercise 7.8 (4 points). Write and test a function abs {.unnumbered}

Edit this cell:

that returns the absolute value of n. This a function that takes a value of type Double and
returns a value of type Double. This function corresponds to the JavaScript library function
Math.abs.

Notes

• Do not use any Scala library functions.

Tests

Edit this cell:

val absSuite = new AnyFlatSpec {
"abs" should "abs(2) == 2" in {

assert(abs(2) == 2)
}
it should "abs(-2) == 2" in {

assert(abs(-2) == 2)
}
it should "abs(0) == 0" in {

assert(abs(0) === 0)
}
it should "???1" in {

???
}

}
report(absSuite)

70



Run starting. Expected test count is: 4
cmd7$Helper$$anon$1:
abs
- should abs(2) == 2 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd6$Helper.abs(cmd6.sc:2)
at ammonite.$sess.cmd7$Helper$$anon$1.$anonfun$new$1(cmd7.sc:3)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

- should abs(-2) == 2 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd6$Helper.abs(cmd6.sc:2)
at ammonite.$sess.cmd7$Helper$$anon$1.$anonfun$new$2(cmd7.sc:6)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

- should abs(0) == 0 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd6$Helper.abs(cmd6.sc:2)
at ammonite.$sess.cmd7$Helper$$anon$1.$anonfun$new$3(cmd7.sc:9)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

- should ???1 *** FAILED ***

71



scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd7$Helper$$anon$1.$anonfun$new$4(cmd7.sc:12)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
at org.scalatest.TestSuite.withFixture$(TestSuite.scala:195)
...

Run completed in 3 milliseconds.
Total number of tests run: 4
Suites: completed 1, aborted 0
Tests: succeeded 0, failed 4, canceled 0, ignored 0, pending 0
*** 4 TESTS FAILED ***

absSuite: AnyFlatSpec = cmd7$Helper$$anon$1

???

Exercise 7.9 (4 points). Write and test a function xor

Edit this cell:

that returns the exclusive-or of a and b. The exclusive-or returns true if and only if exactly
one of a or b is true.

???

Notes

• For practice, do not use the Boolean operators. Instead, only use the if- expression and
the Boolean literals (i.e., true or false).

Tests

Edit this cell:

72



val xorSuite = new AnyFlatSpec {
"xor" should "!xor(true, true)" in {

assert(!xor(true, true))
}
it should "xor(true, false)" in {

assert(xor(true, false))
}
it should "???1" in {

???
}
it should "???2" in {

???
}

}
report(xorSuite)

Run starting. Expected test count is: 4
cmd10$Helper$$anon$1:
xor
- should !xor(true, true) *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd9$Helper.xor(cmd9.sc:2)
at ammonite.$sess.cmd10$Helper$$anon$1.$anonfun$new$1(cmd10.sc:3)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

- should xor(true, false) *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd9$Helper.xor(cmd9.sc:2)
at ammonite.$sess.cmd10$Helper$$anon$1.$anonfun$new$2(cmd10.sc:6)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)

73



at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
...

- should ???1 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd10$Helper$$anon$1.$anonfun$new$3(cmd10.sc:9)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
at org.scalatest.TestSuite.withFixture$(TestSuite.scala:195)
...

- should ???2 *** FAILED ***
scala.NotImplementedError: an implementation is missing
at scala.Predef$.$qmark$qmark$qmark(Predef.scala:345)
at ammonite.$sess.cmd10$Helper$$anon$1.$anonfun$new$4(cmd10.sc:12)
at org.scalatest.OutcomeOf.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf.outcomeOf$(OutcomeOf.scala:83)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.flatspec.AnyFlatSpecLike$$anon$5.apply(AnyFlatSpecLike.scala:1832)
at org.scalatest.TestSuite.withFixture(TestSuite.scala:196)
at org.scalatest.TestSuite.withFixture$(TestSuite.scala:195)
...

Run completed in 4 milliseconds.
Total number of tests run: 4
Suites: completed 1, aborted 0
Tests: succeeded 0, failed 4, canceled 0, ignored 0, pending 0
*** 4 TESTS FAILED ***

xorSuite: AnyFlatSpec = cmd10$Helper$$anon$1

7.4 Imperative Iteration and Complexity

Exercise 7.10 (5 points). Write a function filterPairsByBound.

74



Edit this cell:

that given a list of pairs of integers, for example,

val input1_l = List( (1, 5), (2, 7), (15, 14), (18, 19), (14, 28), (0,0), (35, 24) )

input1_l: List[(Int, Int)] = List(
(1, 5),
(2, 7),
(15, 14),
(18, 19),
(14, 28),
(0, 0),
(35, 24)

)

output a list consisting of just those pairs (𝑛1, 𝑛2) in the original list wherein |𝑛1 − 𝑛2| ≤ 𝑘
where 𝑘 is an integer given as input. Ensure that the order of the elements in the output list
is the same as that in the input list.

For the list input1, the expected output, with k == 1, the expected output is as follows:

With k == 4, the expected output is as follows:

???

Notes

• Your function must be called filterPairsByBound with two arguments: (1) a list of
pairs of integers, and (2) the 𝑘 value. It must return a list of pairs of integers.

• You can use for-loops (or foreach) and the following operators for concatenating ele-
ments to a list:

– ::: appends two lists together.
– :: puts an element on the front of a list.

• You can use the List API method reverse. You may also use the Int abs method to
obtain the absolute value of an integer (or use your abs function above).

• You should not use any other List API functions including filter, map, foldLeft,
foldRight, etc. Plenty of time to learn them properly later on.

• Do not try to convert your list to an array or vector so that you can mutate it.
• If you are unable to solve the problem without violating the restrictions or unsure, ask

us.
• You will need to use var given the above restrictions.

75



Hints

• In Scala, pairs of integers have the type (Int, Int).
• A list containing pairs of integers has the type List[(Int, Int)].
• Recall from the notes, here is how one iterates over the elements of a list in Scala:

val list = List(1, 2, 3)

for (elt <- list) {
// do stuff with elt
println(elt)

}

1
2
3

list: List[Int] = List(1, 2, 3)

• Append an element to the end of a list and update a var:

var resultList = List(1, 2, 3)
val elt = 42

resultList = resultList :+ elt

resultList: List[Int] = List(1, 2, 3, 42)
elt: Int = 42

• Or, append an element to the end of a list using list concatenation and update a var:

var resultList = List(1, 2, 3)
val elt = 42

resultList = resultList ::: List(elt)

resultList: List[Int] = List(1, 2, 3, 42)
elt: Int = 42

• Prepend an element and update a var:

76



var resultList = List(1, 2, 3)
val elt = 42

resultList = elt :: resultList

resultList: List[Int] = List(42, 1, 2, 3)
elt: Int = 42

• Warning: The ::: or other operations appending operations take linear 𝑂(𝑛) time where
𝑛 is the length of the (left) list. Thus, we will often try to avoid using these operations,
but it is ok to use it for this particular part.

Tests

Exercise 7.11 (7 points). Write a function filterPairsByBoundLinearTime

Edit this cell:

If you followed the hint and ignored the linear-time warning in the previous part Exercise 7.10,
then you would have used the ::: operation to append an element to the end of a list at each
step.

for (... <- list) {
// iterate over a loop
...
newList = newList ::: List(newElement) // This takes O(length of newList).

}

Each ::: operation requires a full list traversal to find the end of newList and then append
to it. The overall algorithm thus requires 𝑂(𝑛2) time where is the length of the original list
(also the number of loop iterations).

To illustrate, cut-and-paste and then run this code in a new test cell. Just remember to delete
that cell before you submit. It will take a long time to run.

// Create a list of 1,000,000 pairs
val longTestList = (1 to 1000000).map(x => (x, x - 1)).toList
// Run the function you wrote
filterPairsByBound(longTestList, 1)
// This will take a long time to finish.

77



In this problem, we wish to implement a function filterPairsByBoundLinearTime that solves
the exact same problem as the previous part Exercise 7.10 but takes time linear in the size of
the input list.

To do so, we would like you to use the :: (read “cons”) operator on a list that prepends an
element to the front of a list, instead of :+ or ::: that appends to the back of a list.

You will want to use the List reverse API method:

val list = List(1, 2, 5, 6, 7, 8)
val r = list.reverse

list: List[Int] = List(1, 2, 5, 6, 7, 8)
r: List[Int] = List(8, 7, 6, 5, 2, 1)

The r has the reverse of list, and it works in linear time in the length of list.

The restrictions remain the same as the previous part Exercise 7.10, but we would like you to
focus on ensuring that your solution runs in linear time.

???

Tests

Submission

Submission Instructions

If you are a University of Colorado Boulder student, we use Gradescope for assignment sub-
mission. In summary,

□ Work on a copy of this Jupyter notebook.
□ Submit it to the corresponding Gradescope assignment entry for grading.

GitHub and Gradescope

We use GitHub Classroom for assignment distribution, which gives you a private GitHub
repository to work on your assignment. While using GitHub is perhaps overkill for this assign-
ment, it does give you the ability to version and save incremental progress on GitHub (lest
your laptop fails) and makes it easier to get help from the course staff. It will also become
particularly useful when more files are involved, and it is never too early to get used to the
workflow professional software engineers use with Git.

To use use GitHub and Gradescope,

78



□ Create a private GitHub repository by clicking on a GitHub Classroom link from the
corresponding Canvas assignment entry.

□ Clone your private GitHub repository to your development environment (using the <>
Code button on GitHub to get the repository URL).

□ Work on the copy of this Jupyter notebook from your cloned repository. Use Git to save
versions on GitHub (e.g., git add, git commit, git push on the command line, via
JupyterLab, or via VSCode).

□ Submit to the corresponding Gradescope assignment entry for grading by choosing
GitHub as the submission method.

You need to have a GitHub identity and must have your full name in your GitHub profile in
case we need to associate you with your submissions.

79



8 Recursion, Induction, and Iteration

Thus far in our programming, we have no way to repeat. A natural way to repeat is using recur-
sive functions. Let us consider defining a Scala function that computes factorial. Recall from
discrete mathematics that factorial, written 𝑛!, corresponds to the number of permutations of
𝑛 elements and is defined as follows:

𝑛! def= 𝑛 ⋅ (𝑛 − 1) ⋅ ⋯ ⋅ 1
0! def= 1

From the definition above, we see that factorial satisfies the following equation for 𝑛 ≥ 1:

𝑛! = 𝑛 ⋅ (𝑛 − 1)!

Based on this equation, we can define a Scala function to compute factorial as follows:

def factorial(n: Int): Int = if (n == 0) 1 else n * factorial(n - 1)
factorial(3)

defined function factorial
res0_1: Int = 6

Let us write out some steps of evaluating factorial(3):

factorial(3) ⟶∗ if (3 == 0) 1 else 3 * factorial(3 - 1)
⟶∗ 3 * factorial(2)
⟶∗ 3 * 2 * factorial(1)
⟶∗ 3 * 2 * 1 * factorial(0)
⟶∗ 3 * 2 * 1 * (if (0 == 0) 1 else 1 * factorial(0 - 1))
⟶∗ 3 * 2 * 1 * 1
⟶∗ 6

where the sequence above is shorthand for expressing that each successive pair of expressions
is related by the multi-step evaluation relation ⟶∗ written between them.

Observe that the variable factorial needs to be in scope in the function body (i.e., the
expression after =) to enable the recursive definition. To define a recursive function, the return

80



type : Int has to be given for factorial to be in scope in the function body. (Why? To
enable static type checking.)

def factorial(n: Int) = if (n == 0) 1 else n * factorial(n - 1)

cmd1.sc:1: recursive method factorial needs result type
def factorial(n: Int) = if (n == 0) 1 else n * factorial(n - 1)

^Compilation Failed

:
Compilation Failed

8.1 Induction: Reasoning about Recursive Programs

Induction is important proof technique for reasoning about recursively-defined objects that you
might recall from a discrete mathematics course. Here, we consider basic proofs of properties
of recursive Scala functions.

The simplest form of induction is what we call mathematical induction, that is, induction
over natural numbers. Intuitively, to prove a property 𝑃 over all natural numbers (i.e., ∀𝑛 ∈
ℕ.𝑃(𝑛)), we consider two cases: (a) we prove the property holds for 0 (i.e., 𝑃(0)), which is
called the base case; and (b) we prove that the property holds for 𝑛 + 1 assuming it holds for
an 𝑛 ≥ 0 (i.e., ∀𝑛 ∈ ℕ.(𝑃 (𝑛) ⟹ 𝑃(𝑛 + 1))), which is called the inductive case.

As an example, let us prove that our Scala function factorial computes the mathematical
definition of factorial 𝑛!. To state this property precisely, we need a way to relate mathematical
numbers with Scala values. To do so, we use the notation ⌞𝑛⌟ to mean the Scala integer value
corresponding to the mathematical number 𝑛 (i.e., ⌞𝑛⌟ : Int as long as 𝑛 is representable as
an Int).

Theorem 8.1. For all integers 𝑛 such that 𝑛 ≥ 0,

factorial(⌞𝑛⌟) ⟶∗ ⌞𝑛!⌟ .

Proof. By mathematical induction on 𝑛.

Case 𝑛 = 0: Note that ⌞0⌟ = 0. Taking a few steps of evaluation, we have that

factorial(0) ⟶∗ 1 .

Then, the Scala value can also be written as ⌞0!⌟ because mathematically 0! = 1.

81



Case 𝑛 = 𝑛′ + 1 for some 𝑛′ ≥ 0: The induction hypothesis is as follows:

factorial(⌞𝑛′⌟) ⟶∗ ⌞𝑛′!⌟ .

Let us evaluate factorial(⌞𝑛⌟) a few steps, and we have the following:

factorial(⌞𝑛⌟) ⟶∗ ⌞𝑛⌟ * factorial(⌞𝑛 − 1⌟)

because we know that 𝑛 ≠ 0.

Applying the induction hypothesis (observing that 𝑛 − 1 = 𝑛′), we have that

⌞𝑛⌟ * factorial(⌞𝑛′⌟) ⟶∗ ⌞𝑛⌟ * ⌞𝑛′!⌟

By further evaluation, we have that

⌞𝑛⌟ * ⌞𝑛′!⌟ ⟶ ⌞𝑛 ⋅ 𝑛′!⌟ .

Note that 𝑛 ⋅ 𝑛′!𝑛 = 𝑛 ⋅ (𝑛 − 1)! = 𝑛!, which completes this case.

In the above, we are actually using an abstract notion of evaluation where Scala integer values
are unbounded. In implementation, Scala integers are in fact 32-bit signed two’s complement
integers that we have ignored in our evaluation relation. It is often convenient to use abstract
models of evaluation to essentially separate concerns. Here, we use an abstract model of
evaluation to ignore overflow.

8.2 Pattern Matching

There is another style of writing recursive functions using pattern matching that looks some-
what closer to structure of an inductive proof. For example, we can write an implementation
of factorial equivalent to as follows:

Listing 8.1 Factorial: With Pattern Matching

def factorial(n: Int): Int = n match {
case 0 => 1
case _ => n * factorial(n - 1)

}
factorial(3)

82



defined function factorial
res1_1: Int = 6

The match expression has the following form:

𝑒 match {
case pattern1 => 𝑒1
…
case pattern𝑛 => 𝑒𝑛

}

and evaluates by comparing the value of expression 𝑒 against the patterns given by the cases.
Patterns are tried in sequence from pattern1 to pattern𝑛. Evaluation continues with the corre-
sponding expression for the first pattern that matches. Again, we will revisit pattern matching
in detail in ?@sec-data-structures-and-pattern-matching. For the moment, simply recog-
nize that patterns in general bind names (like seen previously in Section 4.4.4). In Listing 8.1,
we use the “wildcard” pattern _ to match anything that is non-zero.

8.3 Function Preconditions

The definitions of factorial given aboe and implicitly assume that they are called with non-
negative integer values. Consider evaluating factorial(-2):

factorial(-2) ⟶∗ -2 * factorial(-3)
⟶∗ -2 * -3 * factorial(-4)
⟶∗ -2 * -3 * -4 * factorial(-5)
⟶∗ -2 * -3 * -4 * -5 * factorial(-5)
⟶∗ …

We see that we have non-termination with infinite recursion. In implementation, we recurse
until the run-time yields a stack overflow error.

Following principles of good design, we should at least document in a comment the requirement
on the input parameter n that it should be non-negative. In Scala, we do something a bit better
in that we can specify such preconditions in code:

def factorial(n: Int): Int = {
require(n >= 0)
n match {

case 0 => 1

83



case _ => n * factorial(n - 1)
}

}
factorial(-2)

If this version of factorial is called with a negative integer, it will result in a run-time
exception. The require function does nothing if its argument evaluates to true and otherwise
throws an exception if its argument evaluates to false.

For factorial, it is clear that the require will never fail in any recursive call. We really only
need to check the initial n from the initiating call to factorial. One way we can do this is
to use a helper function that actually performs the recursive computation:

def factorial(n: Int): Int = {
require(n >= 0)
def f(n: Int): Int = n match {

case 0 => 1
case _ => n * f(n - 1)

}
f(n)

}
factorial(3)

defined function factorial
res3_1: Int = 6

Here, the f function is local to the factorial function. The f does not do any checking on
its argument, but the require check in factorial will ensure that f always terminates.

8.4 Iteration: Tail Recursion with an Accumulator

Examining the evaluation of the various versions of factorial in this section, we observe that
they all behave similarly: (1) the recursion builds up an expression consisting of a sequence
of multiplication * operations, and then (2) the multiplication operations are evaluated to
yield the result. In a typical run-time system, step (1) grows the call stack of activation
records with recursive calls recording pending evaluation (i.e., the * operation), and each
individual * operation in step (2) is executed while unwinding the call stack on return. Our
abstract notation for evaluation does not represent a call stack explicitly, but we can see the
corresponding behavior in the growing “pending” expression.

84



Not all recursive functions require a call stack of activation records. In particular, when
there’s nothing left to do on return, there is no “pending computation” to record. This kind
of recursive function is called tail recursive. A tail recursive version of the factorial function
is given below in .

def factorial(n: Int): Int = {
require(n >= 0)
def loop(acc: Int, n: Int): Int = n match {

case 0 => acc
case _ => loop(acc * n, n - 1)

}
loop(1, n)

}
factorial(3)

defined function factorial
res4_1: Int = 6

Let us write out some steps of evaluating factorial(3) for this version:

factorial(3) ⟶∗ loop(1, 3)
⟶∗ loop(1 * 3, 2)
⟶∗ loop(3 * 2, 1)
⟶∗ loop(6 * 1, 0)
⟶∗ 6

Observe that the acc variable serves to accumulate the result. When we reach the base case
(i.e., 0), then we simply return the accumulator variable acc. Notice that there is no expression
gets built up during the course of the recursion. When the last call to loop returns, we have
the final result. It is an important optimization for compilers to recognize tail recursion and
avoid building a call stack unnecessarily.

A tail-recursive function corresponds closely to a loop (e.g., a while loop) but does not require
mutation. For example, consider the following imperative version of factorial:

def factorial(n: Int): Int = {
require(n >= 0)
println(s"factorial(n = $n)")
var acc = 1
var i = n
while (i != 0) {

85



println(s"acc -> $acc, i -> $i")
acc = acc * i
i = i - 1

}
println(s"acc -> $acc, i -> $i")
acc

}
factorial(3)

factorial(n = 3)
acc -> 1, i -> 3
acc -> 3, i -> 2
acc -> 6, i -> 1
acc -> 6, i -> 0

defined function factorial
res5_1: Int = 6

Conceptually, each iteration of the while loop corresponds to a call to loop. The value of acc
and i in each iteration of the while loop correspond to the values bound to acc and n on each
tail-recursive call to loop. We see this by comparing the instrumentation to print the values
of acc and i on each loop iteration and the values of acc and n in each tail-recursive call.

def factorial(n: Int): Int = {
require(n >= 0)
println(s"factorial(n = $n)")
def loop(acc: Int, n: Int): Int = {

println(s"-->* loop(acc = $acc, n = $n)")
n match {

case 0 => acc
case _ => loop(acc * n, n - 1)

}
}
val r = loop(1, n)
println(s"-->* $r")
r

}
factorial(3)

factorial(n = 3)

86



-->* loop(acc = 1, n = 3)
-->* loop(acc = 3, n = 2)
-->* loop(acc = 6, n = 1)
-->* loop(acc = 6, n = 0)
-->* 6

defined function factorial
res6_1: Int = 6

8.5 Exercise: Exponentiation

Exercise 8.1. A very similar example to factorial is to define the exponentiation function
exp that computes 𝑥𝑛 for 𝑛 ≥ 0.

def exp(x: Int, n: Int): Int = {
require(n >= 0)
???

}
assert(exp(2,4) == 16)

8.6 Exercise: Tail-Recursive Fibonacci

Let us consider the fibonacci function that computes the 𝑛th Fibonacci number:

def fibonacci(n: Int): Int = {
require(n >= 0)
n match {

case 0 | 1 => 1
case _ => fibonacci(n - 1) + fibonacci(n - 2)

}
}

defined function fibonacci

The fibonacci function is more interesting than factorial because it makes two recur-
sive calls. Is it terminating on all input 𝑛? Yes, we can reason by induction just like with
factorial.

87



Is it tail recursive? Most definitely not, as each recursive call awaits the result of the other
recursive call to then apply + on the results. This is potentially problematic because each call
requires an allocation of a stack frame.

For fibonacci( 𝑛 ), how many recursive calls are made? Let’s consider an instrumented
version that records the stack depth of and the count on total calls to f:

def fibonacci(n: Int): Int = {
require(n >= 0)
println(s"factorial($n)")
def f(n: Int, depth: Int, count: Int): (Int, Int) = {

val r = n match {
case 0 | 1 => (1, count)
case _ => {

val (b, countb) = f(n - 1, depth + 1, count + 1)
val (a, counta) = f(n - 2, depth + 1, countb + 1)
(a + b, counta)

}
}
println(s"${" " * depth}- f(n = $n, depth = $depth, count = $count) = $r")
r

}
val (r, _) = f(n, 0, 1)
r

}
fibonacci(0)
fibonacci(1)
fibonacci(2)
fibonacci(3)
fibonacci(4)
fibonacci(5)

factorial(0)
- f(n = 0, depth = 0, count = 1) = (1,1)
factorial(1)
- f(n = 1, depth = 0, count = 1) = (1,1)
factorial(2)
- f(n = 1, depth = 1, count = 2) = (1,2)
- f(n = 0, depth = 1, count = 3) = (1,3)

- f(n = 2, depth = 0, count = 1) = (2,3)
factorial(3)

- f(n = 1, depth = 2, count = 3) = (1,3)
- f(n = 0, depth = 2, count = 4) = (1,4)

88



- f(n = 2, depth = 1, count = 2) = (2,4)
- f(n = 1, depth = 1, count = 5) = (1,5)

- f(n = 3, depth = 0, count = 1) = (3,5)
factorial(4)

- f(n = 1, depth = 3, count = 4) = (1,4)
- f(n = 0, depth = 3, count = 5) = (1,5)

- f(n = 2, depth = 2, count = 3) = (2,5)
- f(n = 1, depth = 2, count = 6) = (1,6)

- f(n = 3, depth = 1, count = 2) = (3,6)
- f(n = 1, depth = 2, count = 8) = (1,8)
- f(n = 0, depth = 2, count = 9) = (1,9)

- f(n = 2, depth = 1, count = 7) = (2,9)
- f(n = 4, depth = 0, count = 1) = (5,9)
factorial(5)

- f(n = 1, depth = 4, count = 5) = (1,5)
- f(n = 0, depth = 4, count = 6) = (1,6)

- f(n = 2, depth = 3, count = 4) = (2,6)
- f(n = 1, depth = 3, count = 7) = (1,7)

- f(n = 3, depth = 2, count = 3) = (3,7)
- f(n = 1, depth = 3, count = 9) = (1,9)
- f(n = 0, depth = 3, count = 10) = (1,10)

- f(n = 2, depth = 2, count = 8) = (2,10)
- f(n = 4, depth = 1, count = 2) = (5,10)

- f(n = 1, depth = 3, count = 13) = (1,13)
- f(n = 0, depth = 3, count = 14) = (1,14)

- f(n = 2, depth = 2, count = 12) = (2,14)
- f(n = 1, depth = 2, count = 15) = (1,15)

- f(n = 3, depth = 1, count = 11) = (3,15)
- f(n = 5, depth = 0, count = 1) = (8,15)

defined function fibonacci
res9_1: Int = 1
res9_2: Int = 1
res9_3: Int = 2
res9_4: Int = 3
res9_5: Int = 5
res9_6: Int = 8

Unfortunately, the growth of the number of recursive calls is exponential in 𝑛. Thus, to
compute fibonacci(40) requires us to make more than a billion calls.

However, we can see from above that there is a wasted work in repeatedly computing smaller
Fibonacci numbers. We can define a tail-recursive version of the fibonacci function by

89



computing the 𝑛th Fibonacci number “bottom up” starting from the 0th, 1st, 2nd, 3rd, … (using
what you might remember from other classes as dynamic programming).

Exercise 8.2. Give a tail-recursive definition fib of the Fibonacci function:

def fib(n: Int): Int = {
require(n >= 0)
???

}

defined function fib

See that you can compute much larger Fibonacci numbers using your linear-time tail-recursive
implementation fib compared to the direct recursive fibonacci.

90



9 Inductive Data Types

9.1 Lists

As we saw in Section 6.1.1, the List type constructor from the Scala library is defined with
two constructors Nil and :: (pronounced “cons”). A list is a basic inductive data type:

object MyList {
sealed trait List[A]
case class Nil[A]() extends List[A]
case class ::[A](head: A, tail: List[A]) extends List[A]

}

defined object MyList

The List type constructor from Scala library is very close to the above. Observe that List[A]
is a recursive type with the tail field of ::.

Thus, the most direct way to implement functions on Lists is using recursion and pattern
matching. For example, defining a function to compute the length of a list:

def length[A](l: List[A]): Int = l match {
case Nil => 0
case _ :: t => 1 + length(t)

}

defined function length

The definition above using pattern matching very directly follows the inductive structure of
the type. Observe that in a definition of length using an if expression

def length[A](l: List[A]): Int =
if (l == Nil) 0
else 1 + length(l.tail)

91



defined function length

it takes, for example, a bit of extra thought to realize that l.tail will never throw an excep-
tion.

We can also see why a function append (i.e., the ::: method in the Scala library) that appends
one list to another must necessarily be a linear-time operation over the left list xl:

def append[A](xl: List[A], yl: List[A]): List[A] = xl match {
case Nil => yl
case xh :: xt => xh :: append(xt, yl)

}
val xlyl_append = append(List(1, 2, 3), List(4, 5, 6))
val xlyl_::: = List(1, 2, 3) ::: List(4, 5, 6)
xlyl_append == xlyl_:::

defined function append
xlyl_append: List[Int] = List(1, 2, 3, 4, 5, 6)
xlyl_:::: List[Int] = List(1, 2, 3, 4, 5, 6)
res3_3: Boolean = true

Now, observing that append is not tail recursive, we might try to implement the following:

def buggyAppend[A](xl: List[A], yl: List[A]): List[A] = xl match {
case Nil => yl
case xh :: xt => buggyAppend(xt, xh :: yl)

}

defined function buggyAppend

This is is not quite append. What does buggyAppend do?

val xlyl_buggyAppend = buggyAppend(List(1, 2, 3), List(4, 5, 6))

xlyl_buggyAppend: List[Int] = List(3, 2, 1, 4, 5, 6)

It reverses the first list xl and appends the second list yl to it. While a somewhat strange
operation, it is tail recursive and in the standard library:

92



val xlyl_reverse_::: = List(1, 2, 3) reverse_::: List(4, 5, 6)
xlyl_buggyAppend == xlyl_reverse_:::

xlyl_reverse_:::: List[Int] = List(3, 2, 1, 4, 5, 6)
res6_1: Boolean = true

To define the reverse of a list l, we can use append to take an element on the head and
append it to the reverse of the tail:

def reverse[A](l: List[A]): List[A] = l match {
case Nil => Nil
case h :: t => append(reverse(t), h :: Nil)

}
reverse(List(1, 2, 3, 4, 5))

defined function reverse
res7_1: List[Int] = List(5, 4, 3, 2, 1)

But what is the complexity of this function? It is 𝑂(𝑛2) where 𝑛 is the length of l!

Can we write a linear-time reverse? Looking at buggyAppend, we see how:

def reverse[A](l: List[A]): List[A] = {
def rev(l: List[A], acc: List[A]): List[A] = l match {

case Nil => acc
case h :: t => rev(t, h :: acc)

}
rev(l, Nil)

}
reverse(List(1, 2, 3, 4, 5))

defined function reverse
res8_1: List[Int] = List(5, 4, 3, 2, 1)

Let’s instrument this linear-time reverse to see it in action:

93



def reverse[A](l: List[A]): List[A] = {
println(s"reverse($l)")
def rev(l: List[A], acc: List[A]): List[A] = {

println(s"-->* loop($l, $acc)")
l match {

case Nil => acc
case h :: t => rev(t, h :: acc)

}
}
val r = rev(l, Nil)
println(r)
r

}
reverse(List(1, 2, 3, 4, 5))

reverse(List(1, 2, 3, 4, 5))
-->* loop(List(1, 2, 3, 4, 5), List())
-->* loop(List(2, 3, 4, 5), List(1))
-->* loop(List(3, 4, 5), List(2, 1))
-->* loop(List(4, 5), List(3, 2, 1))
-->* loop(List(5), List(4, 3, 2, 1))
-->* loop(List(), List(5, 4, 3, 2, 1))
List(5, 4, 3, 2, 1)

defined function reverse
res9_1: List[Int] = List(5, 4, 3, 2, 1)

Observe that rev is exactly buggyAppend. The specification of rev (or buggyAppend) is that
it returns the reverse of the its first argument followed by its second argument appended.

Previously, our discussion about tail recursion (Section 8.4) was simply about efficiency because
the operators we considered were commutative (e.g., + or * on Ints). Now, with a non-
commutative operator like ::, we see that there is something more.

The intuition is that the accumulator parameter acc in rev enables us to “do something” as
we “recurse down” the list. And the stack in a non-tail recursive function enables us to “do
something” as we “return up”.

9.2 Persistent Data Structures

Lists are special case of trees with one recursive parameter, so we see that values of user-defined
inductive data types are in general trees. For example, we can define a binary tree of Ints:

94



sealed trait BinaryTree
case object Empty extends BinaryTree
case class Node(l: BinaryTree, d: Int, r: BinaryTree) extends BinaryTree

Node(Node(Empty, 2, Empty), 10, Node(Empty, 14, Node(Empty, 17, Empty)))

defined trait BinaryTree
defined object Empty
defined class Node
res10_3: Node = Node(
l = Node(l = Empty, d = 2, r = Empty),
d = 10,
r = Node(l = Empty, d = 14, r = Node(l = Empty, d = 17, r = Empty))

)

One key application of immutable trees are for representing maps and sets with logarith-
mic lookup, insertion, and deletion using balanced search trees. First, consider making the
BinaryTree type generic:

sealed trait BinaryTree[K,V]
case class Empty[K,V]() extends BinaryTree[K,V]
case class Node[K,V](l: BinaryTree[K,V], kv: (K, V), r: BinaryTree[K,V]) extends BinaryTree[K,V]

Node(Node(Empty(), 2 -> List("two", "dos", "�"), Empty()), 10 -> List("ten", "diez", "�"), Node(Empty(), 14 -> List("fourteen", "catorce", "��"), Node(Empty(), 17 -> List("seventeen", "diecisiete", "��"), Empty())))

defined trait BinaryTree
defined class Empty
defined class Node
res11_3: Node[Int, List[String]] = Node(
l = Node(l = Empty(), kv = (2, List("two", "dos", "\u4e8c")), r = Empty()),
kv = (10, List("ten", "diez", "\u5341")),
r = Node(

l = Empty(),
kv = (14, List("fourteen", "catorce", "\u5341\u56db")),
r = Node(
l = Empty(),
kv = (17, List("seventeen", "diecisiete", "\u5341\u4e03")),
r = Empty()

)
)

)

95



Now, we do not want to directly construct such trees. Instead, we design an API for lookup,
insertion, and deletion to maintain search (i.e., ordering) and balance invariants. Lookup, in-
sertion, and deletion are logarithmic when the search and balance invariants are maintained.

The Scala Map and Set libraries are such search tree data structures.

val m = Map(2 -> List("two", "dos", "�"), 10 -> List("ten", "diez", "�"))
val newm = m + (14 -> List("fourteen", "catorce", "��"))

m: Map[Int, List[String]] = Map(
2 -> List("two", "dos", "\u4e8c"),
10 -> List("ten", "diez", "\u5341")

)
newm: Map[Int, List[String]] = Map(
2 -> List("two", "dos", "\u4e8c"),
10 -> List("ten", "diez", "\u5341"),
14 -> List("fourteen", "catorce", "\u5341\u56db")

)

The map newm is the map m with an additional key-value pair 14 -> List("fourteen", "catorce", "��")
inserted. Note that both the old version m and the new version newm exist:

val mOf10 = m(10)
val newmOf10 = newm(10)

mOf10: List[String] = List("ten", "diez", "\u5341")
newmOf10: List[String] = List("ten", "diez", "\u5341")

By checking reference equality (i.e., using eq)

mOf10 eq newmOf10
mOf10 eq List("ten", "diez", "�")
mOf10 == List("ten", "diez", "�")

res14_0: Boolean = true
res14_1: Boolean = false
res14_2: Boolean = true

we see that the above is one tree with both two versions on top of each other, leveraging
immutability. Such data structures are called persistent because multiple versions can persist
at the same time. In contrast, imperative data structures are ephemeral because only one
version can exist at a time.

96



9.3 Abstract Syntax Trees (ASTs)

9.3.1 Mini Programming Languages

It is difficult to build an interpreter for any substantial language all at once. In this book,
we will make some simplifications. We consider small subsets that isolate the essence of a
language feature and incrementally examine more and more complex subsets.

For concreteness, let us consider variants of JavaScript as our primary object language of study,
and we affectionately call the language that we implement in this course JavaScripty. However,
note that the various subsets we consider could mimic just about any other language. In fact,
this course has used other object languages in the past (e.g., a mini-OCaml called Lettuce, a
mini-Scala called Smalla).

Because we do not yet have the mathematical tools to specify the semantics of a language, let
us define JavaScripty to be a proper subset of JavaScript. That is, we may choose to omit
complex behavior in JavaScript, but we want any programs that we admit in JavaScripty to
behave in the same way as in JavaScript.

For example, let us consider the JavaScripty expression with +:

3 + 7 + 4.2

that results in 14.2. That is,

When we have the tools to specify the semantics of a language, we may choose to make
JavaScripty to have different semantics than JavaScript.

In actuality, there is not one language called JavaScript (officially, ECMAScript) but a set
of closely related languages that may have slightly different semantics. In deciding how a
JavaScripty program should behave, we consult a reference implementation (that we fix to be
Google’s open source V8 JavaScript Engine). We can run V8 through various engine interfaces
(e.g., node and deno), and thus, we can write little test JavaScript programs and run it through
to the engine to see how the test should behave.

9.3.2 Representing Abstract Syntax

The first thing we have to consider is how to represent a JavaScripty program as data in Scala,
that is, we need to be able to represent a program in our object/source language JavaScripty
as data in our meta/implementation language Scala.

To a JavaScripty programmer, a JavaScripty program is a text file—a string of characters.
Such a representation is quite cumbersome to work with as a language implementer. Instead,
language implementations typically work with trees called abstract syntax trees (ASTs). What

97



strings are considered JavaScripty programs is called the concrete syntax of JavaScripty, while
the trees (or terms) that are JavaScripty programs is called the abstract syntax of JavaScripty.
The process of converting a program in concrete syntax (i.e., as a string) to a program in
abstract syntax (i.e., as a tree) is called parsing.

While parsing seems like the place to start an implementation, the theory and implementation
of parsers are surprising subtle. Instead, we can directly start our study of programming
languages from abstract syntax assuming the JavaScripty input programs of interest come
directly as abstract syntax trees.

9.3.2.1 JavaScripty: Number Literals and Addition

We represent abstract syntax trees in our meta/implementation language Scala using inductive,
algebraic data types. Let us consider representing the most tiny JavaScripty language with
number literals and + expressions. Here’s one possible representation:

sealed trait Expr
case class N(n: Double) extends Expr
case class Plus(e1: Expr, e2: Expr) extends Expr

val three = N(3)
val seven = N(7)
val four_point_two = N(4.2)
val three_plus_seven = Plus(three, seven)
val three_plus_seven_plus_four_point_two = Plus(three_plus_seven, four_point_two)

defined trait Expr
defined class N
defined class Plus
three: N = N(n = 3.0)
seven: N = N(n = 7.0)
four_point_two: N = N(n = 4.2)
three_plus_seven: Plus = Plus(e1 = N(n = 3.0), e2 = N(n = 7.0))
three_plus_seven_plus_four_point_two: Plus = Plus(
e1 = Plus(e1 = N(n = 3.0), e2 = N(n = 7.0)),
e2 = N(n = 4.2)

)

Here, we let a Scala value of type Expr (i.e., the meta language) represent a JavaScripty
expression (i.e., the object language). A parser implementation (e.g., parse: String => Expr
function) would take as input a JavaScripty expression (i.e., the object language) in concrete

98



syntax (i.e., as a string) and convert into a Scala value of type Expr (i.e., in the meta language)
as a tree (i.e., abstract syntax).

An N node represents a number literal where we represent JavaScripty numbers 𝑛 as a Scala
Double, and Plus is an AST node representing the JavaScripty 𝑒1 + 𝑒2.

Once we have a Scala value of type Expr, we can define functions that manipulate JavaScripty
expressions. For example, we can define evaluation of JavaScripty expressions as an eval
function in Scala:

def eval(e: Expr): Double = e match {
case N(n) => n
case Plus(e1, e2) => eval(e1) + eval(e2)

}

eval( N(1.66) )
eval( Plus(N(2.1), N(3.5)) )
eval( three_plus_seven_plus_four_point_two )

defined function eval
res16_1: Double = 1.66
res16_2: Double = 5.6
res16_3: Double = 14.2

99



10 Lab: Recursion, Inductive Data Types, and
Abstract Syntax Trees

Learning Goals

The primary learning goals of this assignment are to build intuition for the following:

Functional Programming Skills Representing data structures using algebraic data types.
Programming Languages Ideas Representing programs as abstract syntax.

Instructions

A version of project files for this lab resides in the public pppl-lab1 repository. Please follow
separate instructions to get a private clone of this repository for your work.

You will be replacing ??? in the Lab1.scala file with solutions to the coding exercises described
below. Make sure that you remove the ??? and replace it with the answer.

You may add additional tests to the Lab1Spec.scala file. In the Lab1Spec.scala, there is
empty test class Lab1StudentSpec that you can use to separate your tests from the given tests
in the Lab1Spec class. You are also likely to edit Lab1.worksheet.sc for any scratch work.

Single-file notebooks are convenient when experimenting with small bits of code, but they can
become unwieldy when one needs a multiple-file project instead. In this case, we use standard
build tools (e.g., sbt for Scala), IDEs (e.g., Visual Studio Code with Metals), and source
control systems (e.g., git with GitHub). While it is almost overkill to use these standard
software engineering tools for this lab, we get practice using these tools in the small.

If you like, you may use this notebook for experimentation. However, please make sure
your code is in Lab1.scala; this notebook will not graded.

10.1 Recursion

10.1.1 Repeat String

Exercise 10.1. Write a recursive function repeat

100

https://github.com/csci3155/pppl-lab1


where repeat(s, n) returns a string with n copies of s concatenated together. For example,
repeat("a",3) returns "aaa". Implement by this function by direct recursion. Do not use
any Scala library methods.

10.1.2 Square Root

In this exercise, we will implement the square root function. To do so, we will use Newton’s
method (also known as Newton-Raphson).

Recall from Calculus that a root of a differentiable function can be iteratively approximated
by following tangent lines. More precisely, let 𝑓 be a differentiable function, and let 𝑥0 be an
initial guess for a root of 𝑓 . Then, Newton’s method specifies a sequence of approximations
𝑥0, 𝑥1, … with the following recursive equation:

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑓 ′(𝑥𝑛) .

The square root of a real number 𝑐 for 𝑐 > 0, written
√𝑐, is a positive 𝑥 such that 𝑥2 = 𝑐.

Thus, to compute the square root of a number 𝑐, we want to find the positive root of the
function:

𝑓(𝑥) = 𝑥2 − 𝑐 .
Thus, the following recursive equation defines a sequence of approximations for

√𝑐:

𝑥𝑛+1 = 𝑥𝑛 − 𝑥2
𝑛 − 𝑐
2𝑥𝑛

.

Exercise 10.2. First, implement a function sqrtStep

def sqrtStep(c: Double, xn: Double): Double = ???

defined function sqrtStep

that takes one step of approximation in computing
√𝑐 (i.e., computes 𝑥𝑛+1 from 𝑥𝑛).

Exercise 10.3. Next, implement a function sqrtN

def sqrtN(c: Double, x0: Double, n: Int): Double = ???

defined function sqrtN

101



that computes the 𝑛th approximation 𝑥𝑛 from an initial guess 𝑥0. You will want to call
sqrtStep implemented in the previous part.

You need to implement this function using recursion and no mutable variables (i.e., vars)—
you will want to use a recursive helper function. It is also quite informative to compare your
recursive solution with one using a while loop.

Exercise 10.4. Now, implement a function sqrtErr

def sqrtErr(c: Double, x0: Double, epsilon: Double): Double = ???

defined function sqrtErr

that is very similar to sqrtN but instead computes approximations 𝑥𝑛 until the approximation
error is within 𝜀 (epsilon), that is, |𝑥2

𝑛 − 𝑐| < 𝜀 . You can use your absolute value function
abs implemented in a previous part. A wrapper function sqrt is given in the template that
simply calls sqrtErr with a choice of x0 and epsilon.

You need to implement this function using recursion, though it is useful to compare your
recursive solution to one with a while loop.

10.2 Data Structures Review: Binary Search Trees

In this question, we review implementing operations on binary search trees from Data Struc-
tures. Balanced binary search trees are common in standard libraries to implement collections,
such as sets or maps. For simplicity, we do not worry about balancing in this question.

Trees are important structures in developing interpreters, so this question is also critical prac-
tice in implementing tree manipulations.

A binary search tree is a binary tree that satisfies an ordering invariant. Let 𝑛 be any node
in a binary search tree whose left child is 𝑙, data value is 𝑑, and right child is 𝑟. The ordering
invariant is that all of the data values in the subtree rooted at 𝑙 must be < 𝑑, and all of the
data values in the subtree rooted at 𝑟 must be ≥ 𝑑. We will represent a binary trees containing
integer data using the following Scala case classes:

sealed trait Tree
case object Empty extends Tree
case class Node(l: Tree, d: Int, r: Tree) extends Tree

102



defined trait Tree
defined object Empty
defined class Node

A Tree is either Empty or a Node with left child l, data value d, and right child r.

For this question, we will implement the following four functions.

Exercise 10.5. The function repOk

def repOk(t: Tree): Boolean = {
def check(t: Tree, min: Int, max: Int): Boolean = t match {

case Empty => true
case Node(l, d, r) => ???

}
check(t, Int.MinValue, Int.MaxValue)

}

defined function repOk

checks that an instance of Tree is valid binary search tree. In other words, it checks using a
traversal of the tree the ordering invariant described above. This function is useful for testing
your implementation.

Exercise 10.6. The function insert

def insert(t: Tree, n: Int): Tree = ???

defined function insert

inserts an integer into the binary search tree. Observe that the return type of insert is a
Tree. This choice suggests a functional style where we construct and return a new output tree
that is the input tree t with the additional integer n as opposed to destructively updating the
input tree.

Exercise 10.7. The function deleteMin

103



def deleteMin(t: Tree): (Tree, Int) = {
require(t != Empty)
(t: @unchecked) match {

case Node(Empty, d, r) => (r, d)
case Node(l, d, r) =>

val (l1, m) = deleteMin(l)
???

}
}

defined function deleteMin

deletes the smallest data element in the search tree (i.e., the leftmost node). It returns both
the updated tree and the data value of the deleted node. This function is intended as a helper
function for the delete function.

Exercise 10.8. The function delete

def delete(t: Tree, n: Int): Tree = ???

defined function delete

removes the first node with data value equal to n. This function is trickier than insert because
what should be done depends on whether the node to be deleted has children or not. We advise
that you take advantage of pattern matching to organize the cases.

10.3 Interpreter: JavaScripty Calculator

In this question, we consider the arithmetic sub-language of JavaScripty (i.e., a basic calcu-
lator). We represent the abstract syntax for this sub-language in Scala using the following
inductive data type:

defined trait Expr
defined class N
defined class Unary
defined class Binary
defined trait Uop
defined object Neg
defined trait Bop

104



Listing 10.1 Representing in Scala the abstract syntax of the arithmetic sub-language of
JavaScripty (see ast.scala).

sealed trait Expr // e ::=
case class N(n: Double) extends Expr // n
case class Unary(uop: Uop, e1: Expr) extends Expr // | uop e1
case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr // | e1 bop e2

sealed trait Uop // uop ::=
case object Neg extends Uop // -

sealed trait Bop // bop ::=
case object Plus extends Bop // +
case object Minus extends Bop // | -
case object Times extends Bop // | *
case object Div extends Bop // | /

defined object Plus
defined object Minus
defined object Times
defined object Div

In comments, we give a grammar that connects the abstract syntax with the concrete syntax
of the language. We consider grammars in more detail subsequentlyin ?@sec-grammars. For
now, it is fine to ignore the concrete syntax or use your intuition for the connection. ow, given
the inductive data type Expr defining the abstract syntax:

Exercise 10.9. Implement the eval function

def eval(e: Expr): Double = e match {
case N(n) => ???
case _ => ???

}

defined function eval

that evaluates the Scala representation of a JavaScripty expression e to the Scala double-
precision floating point number corresponding to the Scala representation of the JavaScripty
value of e. At this point, you have implemented your first language interpreter!

105



To go in more detail, consider a JavaScripty expression 𝑒, and imagine 𝑒 to be concrete syntax.
This text is parsed into a JavaScripty AST e, that is, a Scala value of type Expr. Then, the
result of eval is a Scala number of type Double and should match the interpretation of 𝑒 as
a JavaScript expression. These distinctions can be subtle but learning to distinguish between
them will go a long way in making sense of programming languages.

To see what a JavaScripty expression 𝑒 should evaluate to, you may want to run 𝑒 through a
JavaScript interpreter to see what the value should be. For example,

3 + 4

1 / 7

6 * 4 - 2 + 10

Experiment in a Worksheet

Scala worksheets provide an interactive interface in the context of a multi-file project. A work-
sheet is a good place to start for experimenting with an implementation, whether on existing
code or code that you are in the process of writing. A scratch worksheet Lab1.worksheet.sc
is provided for you in the code repository.

To test and experiment with your eval function, you can write JavaScripty expressions directly
in abstract syntax like above. You can also make use of a parser that is provided for you: it
reads in a JavaScripty program-as-a-String and converts into an abstract syntax tree of type
Expr.

For your convenience, we have also provided in the template Lab1.scala file, an overloaded
eval: String => Double function that calls the provided parser and then delegates to your
eval: Expr => Double function.

Test-Driven Development and Regression Testing

Once you have experimented enough in your worksheet to have some tests, it is useful to save
those tests to run over-and-over again as you work on your implementation. The idea behind
test-driven development is that we first write a test for what we expect our implementation to
do. Initially, we expect our implementation to fail the test, and then we work on our implemen-
tation until the test succeeds. IDEs have features to support this workflow. While a test suite
can never be exhaustive, we have provided a number of initial tests for you in Lab1Spec.scala
to partially drive your test-driven development of the functions in this assignment.

106



Additional Notes

While you may not need them in this assignment, the ast.scala file also includes some basic
helper functions for working with the AST, such as

def isValue(e: Expr): Boolean = e match {
case N(_) => true
case _ => false

}

val e_minus4_2 = N(-4.2)
isValue(e_minus4_2)

val e_neg_4_2 = Unary(Neg, N(4.2))
isValue(e_neg_4_2)

defined function isValue
e_minus4_2: N = N(n = -4.2)
res12_2: Boolean = true
e_neg_4_2: Unary = Unary(uop = Neg, e1 = N(n = 4.2))
res12_4: Boolean = false

the defines which expressions are values. In this case, literal number expressions N( 𝑛 )
are values where 𝑛 is the meta-variable for JavaScripty numbers. We represent JavaScripty
numbers in Scala with Scala values of type Double.

We also define functions to pretty-print, that is, convert abstract syntax to concrete syntax:

def prettyNumber(n: Double): String =
if (n.isWhole) "%.0f" format n else n.toString

def pretty(v: Expr): String = {
require(isValue(v))
(v: @unchecked) match {

case N(n) => prettyNumber(n)
}

}

pretty(N(4.2))
pretty(N(10))

107



defined function prettyNumber
defined function pretty
res13_2: String = "4.2"
res13_3: String = "10"

We only define pretty for values, and we do not override the toString method so that the
abstract syntax can be printed as-is.

e_minus4_2.toString
e_neg_4_2.toString

res14_0: String = "N(-4.2)"
res14_1: String = "Unary(Neg,N(4.2))"

The @unchecked annotation tells the Scala compiler that we know the pattern match is non-
exhaustive syntactically, so we do not want to be warned about it. However, we see that our
definition of isValue rules out the potential for a match error at run time (right?).

Submission

If you are a University of Colorado Boulder student, we use Gradescope for assignment sub-
mission. In summary,

□ Create a private GitHub repository by clicking on a GitHub Classroom link from the
corresponding Canvas assignment entry.

□ Clone your private GitHub repository to your development environment (using the <>
Code button on GitHub to get the repository URL).

□ Work on this lab from your cloned repository. Use Git to save versions on GitHub (e.g.,
git add, git commit, git push on the command line or via VSCode).

□ Submit to the corresponding Gradescope assignment entry for grading by choosing
GitHub as the submission method.

You need to have a GitHub identity and must have your full name in your GitHub profile in
case we need to associate you with your submissions.

108



Part III

Approaching a Programming Language

109



11 Concrete Syntax

We have studied programming languages like Scala up to this point mostly by example. At
some point, we may wonder (1) what are all the Scala programs that we can write, and (2)
what do they mean? The answer to question (1) is given by a definition of Scala’s syntax,
while the answer to question (2) is given by a definition of Scala’s semantics.

As a language designer, it is critical to us that we define unambiguously the syntax and
semantics so that everyone understands our intent. Language users need to know what they
can write and how the programs they write will execute as alluded to in the previous paragraph.
Language implementers need to know what are the possible input strings and what they mean
in order to produce semantically-equivalent output code.

11.1 Concrete versus Abstract Syntax

Stated informally, the syntax of a language is concerned with the form of programs, such as,
the strings that we consider programs. The semantics of a language is concerned with the
meaning of programs, that is, how programs evaluate. Because there an unbounded number of
possible programs in a language, we need tools to speak more abstractly about them. Here, we
focus on describing the syntax of programming languages. We consider defining the semantics
of programming languages subsequentlyin ?@sec-operational-semantics.

The concrete syntax of a programming language is concerned with how to write down expres-
sions, statements, and programs as strings. Concrete syntax is the primary interface between
the language user and the language implementation. Thus, the design of concrete syntax
focuses on improving readability and perhaps writability for software developers. There are
significant sociological considerations, such as appealing to tradition (e.g., using curly braces
{ … } to denote blocks of statements). A large part of concrete syntax design is a human-
computer interaction problem, which is outside of what we can consider in this course.

The abstract syntax of a programming language is the representation of programs as trees (as
in Section 9.3) used by language implementations and thus an important mental model for
language implementers and language users. We draw out the relationship between concrete
and abstract syntax here.

110



11.2 Context-Free Grammars

Formal language theory considers the study of describing sets of strings and the relative com-
putational power of their recognizers called automata. We consider the formalisms from formal
language theory only to the extent to be able to describe the syntax of a programming language.
In particular, we introduce grammars that are formalisms for defining sets inductively.

A formal language ℒ is a set of strings composed of characters drawn from some alphabet Σ
(i.e., ℒ ⊆ Σ∗). A string in a language is sometimes called a sentence.

The standard way to describe the concrete syntax of a language is using context-free grammars.
A context-free grammar is a way to describe a class of languages called context-free languages.
In formal language theory, context-free languages are a proper superset of regular languages,
and context-free grammars are the notational analogue of regular expressions.

A context-free grammar defines a language inductively and consists of terminals, non-terminals,
and productions. Terminals and non-terminals are generically called symbols.

The terminals of a grammar correspond to the alphabet of the language being defined and
are the basic building blocks. Non-terminals are defined via productions and conceptually
recognize a sequence of symbols belonging to a sub-language. A production has the form

𝑁 ∶∶= 𝛼

where 𝑁 is a non-terminal from the set of non-terminals 𝒩 and 𝛼 is a sequence of symbols
(i.e., 𝛼 ∈ (Σ ∪ 𝒩)∗). We write 𝜀 for the empty sequence. Note that ∶∶= is sometimes written
using different styles of arrows (e.g., →).

A set of of productions with the same non-terminal, such as

{𝑁 ∶∶= 𝛼1, … , 𝑁 ∶∶= 𝛼𝑛}

is usually written with one instance of the non-terminal and the right-hand sides separated
by ∣, such as

𝑁 ∶∶= 𝛼1 ∣ ⋯ ∣ 𝛼𝑛

Such a set of productions can be read informally as, “𝑁 is generated by either 𝛼1, …, or 𝛼𝑛.”
For any non-terminal 𝑁 , we can talk about the language or syntactic category defined by that
non-terminal. This particular notation for context-free grammars is often called BNF (for
Backus-Naur Form).

As an example, let us consider defining a language of integers as follows:

integers 𝑖 ∶∶= -𝑛 ∣ 𝑛
numbers 𝑛 ∶∶= 𝑑 ∣ 𝑑 𝑛

digits 𝑑 ∶∶= 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

111



with the alphabet
Σ def= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -} .

We identify the overall language by the start non-terminal (also called the start symbol). By
convention, we typically consider the non-terminal listed first as the start non-terminal. Here,
we have strings like 1, 2, 42, 100, and -7 in our language of integers. Note that strings like
012 and -0 are also in this language.

11.2.1 Deriving a Sentence in a Grammar

Formally, a string is in the language described by a grammar if and only if we can give a
grammar derivation for it from the start symbol of the grammar. We say a sequence of
symbols 𝛽 is derived from another sequence of symbols 𝛼, written as

𝛼 ⟹ 𝛽

when 𝛽 is obtained by replacing a non-terminal 𝑁 in 𝛼 with the right-hand side of a production
of 𝑁 . We can give a witness that a string 𝑠 belongs to a language by showing derivation steps
from the start symbol to the string 𝑠. For example, we show that is in the language of integers
defined above:

𝑖 ⟹ 𝑛
⟹ 𝑑 𝑛
⟹ 0 𝑛
⟹ 0 𝑑 𝑛
⟹ 01 𝑛
⟹ 01 𝑑
⟹ 012

In the above, we have shown a leftmost derivation, that is, one where we always choose to
expand the leftmost non-terminal. We can similarly define a rightmost derivation. Note that
there are typically several derivations that witness a string belonging the language described
by a grammar.

We can now state precisely the language described by a grammar. Let ℒ(𝐺) be the language
described by grammar 𝐺 over the alphabet Σ, start symbol 𝑆, and derivation relation ⟹. We
define the relation 𝛼 ⟹∗ 𝛽 as holding if and only if 𝛽 can be derived from 𝛼 with the one-step
derivation relation ⟹ in zero or more steps (i.e., ⟹∗ is the reflexive-transitive closure of ⟹).
Then, ℒ(𝐺) is defined as follows:

ℒ(𝐺) def= { 𝑠 | 𝑠 ∈ Σ∗ and 𝑆 ⟹∗ 𝑠 } .

112



11.2.2 Lexical and Syntactic

In language implementations, we often want to separate the simple grouping of characters
from the identification of structure. For example, when we read the string 23 + 45, we would
normally see three pieces: the number twenty-three, the plus operator, and the number forty-
five, rather than the literal sequence of characters ‘2’, ‘3’, ‘ ’, ‘+’, ‘ ’, ‘4’, and ‘5’.

Thus, it is common to specify the lexical structure of a language separately from the syntactic
structure. The lexical structure is this simple grouping of characters, which is often specified
using regular expressions. A lexer transforms a sequence of literal characters into a sequence
of lexemes classified into tokens. For example, a lexer might transform the string "23 + 45"
into the following sequence:

num("23"), +, num("45")
consisting of three tokens: a num token with lexeme "23", a plus token with lexeme "+", and
a num token with lexeme "45". Since there is only one possible lexeme for the plus token, we
abuse notation slightly and name the token by the lexeme. A lexer is also sometimes called a
scanner.

A parser then recognizes strings of tokens, typically specified using context-free grammars. For
example, we might define a language of expressions with numbers and the plus operator:

expressions expr ∶∶= num ∣ expr + expr

Note that num is a terminal in this grammar.

There is an analogy to parsing sentences in natural languages. Grouping letters into words in
a sentence corresponds essentially to lexing, while classifying words into grammatical elements
(e.g., nouns, verbs, noun phrases, verb phrases) corresponds to parsing.

As context-free languages include regular languages, one can also define parsers without lexers,
typically called lexer-less parsers or scanner-less parsers.

11.2.3 Ambiguous Grammars

Consider the following arithmetic expression:

100 / 10 / 5

Should it be read as (100 / 10) / 5 or 100 / (10 / 5)? The former evaluates to 2, while
the latter evaluates to 50. In mathematics, we adopt conventions that, for example, choosing
the former over the latter.

113



11.2.3.1 Associativity

Now consider a language implementation that is given the following input:

100 / 10 / 5

Which reading should it take? In particular, consider the grammar

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒 / 𝑒

where 𝑛 is the terminal for numbers.

We can diagram the two ways of reading the string ‘100 / 10 / 5’ as shown in Figure 11.1a
and Figure 11.1b where we write the lexemes for the 𝑛 tokens in parentheses for clarity.

𝑒

𝑒

𝑒

𝑛(100)

/ 𝑒

𝑛(10)

/ 𝑒

𝑛(5)

(a) The left-associative parse tree corresponding
to (100 / 10) / 5.

𝑒

𝑒

𝑛(100)

/ 𝑒

𝑒

𝑛(10)

/ 𝑒

𝑛(5)
(b) The right-associative parse tree correspond-

ing to 100 / (10 / 5).

Figure 11.1: An ambiguous grammar is exhibited by two parse trees for a string in the language
described by the grammar.

These diagrams are called parse trees, and they are another way to demonstrate that a string
is the language described by a grammar. In a parse tree, a parent node corresponds to a
non-terminal where its children correspond to the sequence of symbols in a production of that
non-terminal. Parse trees capture syntactic structure and distinguishes between the two ways
of “reading” ‘100 / 10 / 5’. We call the grammar given above ambiguous because we can
witness a string that is “read” in two ways by giving two parse trees for it. Note that the
parentheses (…) in the captions are not part of sentences of the grammar but rather at the
meta-level to convey the particular parse tree.

In this way, a parse tree can be viewed as recognizing a string by a grammar in a “bottom-up
manner.” In contrast, derivations intuitively capture generating strings described a grammar
in a “top-down manner.”

114



Can we rewrite the above grammar to make it unambiguous? That is, can we rewrite the
above grammar such that the set of strings accepted by the grammar is the same but is also
unambiguous.

Yes, we can rewrite the above grammar in two ways to eliminate ambiguity as shown in
Table 11.1. One grammar is left recursive, that is, the production

𝑒 ∶∶= 𝑒 / 𝑛

is recursive only on the left of the binary operator token /. Analogously, we can write a right
recursive grammar that accepts the same strings.

Table 11.1: Rewriting a grammar to eliminate ambiguity with respect to associativity.

Ambiguous Unambiguous
Left-Recursive Right-Recursive

𝑒 ∶∶= 𝑛 ∣ 𝑒 / 𝑒 𝑒 ∶∶= 𝑛 ∣ 𝑒 / 𝑛 𝑒 ∶∶= 𝑛 ∣ 𝑛 / 𝑒

Intuitively, these grammars enforce a particular linearization of the possible parse trees: either
to the left or to the right as shown in Figure 11.2. As a terminological shorthand, we say that
a binary operator is left associative to mean that expression trees involving that operator are
linearized to the left, as in Figure 11.2a. Analogously, a binary operator is right associative
means expression trees involving that operator are linearized to the right, as in Figure 11.2b.

𝑒

𝑒

𝑒

𝑛(100)

/ 𝑛(10)

/ 𝑛(5)

(a) The one possible parse tree for
100 / 10 / 5 corresponding to the
left-recursive grammar in Table 11.1.

𝑒

𝑛(100) / 𝑒

𝑛(10) / 𝑒

𝑛(5)
(b) The one possible parse tree for

100 / 10 / 5 corresponding to the
right-recursive grammar in Table 11.1.

Figure 11.2: Grammars that enforce a particular associativity.

115



11.2.3.2 Precedence

A related syntactic issue appears when we consider multiple operators, such as the ambiguous
grammar in Table 11.2.

Table 11.2: Rewriting a grammar to eliminate ambiguity and enforce a particular associativity
and precedence. Both operators are left associative and the / operator has higher
precedence than -.

Ambiguous Unambiguous

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒 / 𝑒 ∣ 𝑒 - 𝑒 expressions 𝑒 ∶∶= 𝑓 ∣ 𝑒 - 𝑓
factors 𝑓 ∶∶= 𝑛 ∣ 𝑓 / 𝑛

For example, the string
10 - 10 / 10

has two parse trees corresponding to the following two readings:

(10 - 10) / 10 or 10 - (10 / 10)

We may want to enforce that the / operator “binds tighter,” that is, has higher precedence than
the - operator, which corresponds to the reading on the right. To enforce the desired prece-
dence, we can refactor the ambiguous grammar into the unambiguous one shown in Table 11.2.
We layer the grammar by introducing a new non-terminal 𝑓 that describes expressions with
only / operators. The non-terminal 𝑓 is left recursive, so we enforce that / is left associative.
The start non-terminal 𝑒 can be either an 𝑓 or an expression with a - operator.

Intuitively from a top-down, derivation perspective, once 𝑒 ⟹ 𝑓 , then there is no way to
derive a - operator. Thus, in any parse tree for a string that includes both - and / operators,
the - operators must be “higher” in the tree. Note that higher precedence means “binding
tighter” or “lower in the parse tree,” and similarly, lower precedence means “binding looser”
or “higher in the parse tree.”

11.2.3.3 Syntactic and Semantic

An important observation is that ambiguity is a syntactic concern: which tree do we get when
we parse a string? This concern is different than and distinct with respect to what do the /
or the - operators mean (e.g., perhaps division and subtraction), that is, the semantics of our
expression language or to what value does an expression evaluate. The issue is the same if we
consider a language with a pair operators that have a less ingrained meaning, such as @ and
#.

116



If we know semantics of the language, then we can sometimes probe to determine associativ-
ity or precedence. For example, let us suppose we are interested in seeing what is relative
precedence of the / and - operators in Scala. Knowing that / means division and - means
subtraction, then observing the value of the expression 10 - 10 / 10 tells us the relative
precedence of these two operators. Specifically, if the value is 9, then / has higher precedence,
but if the value is 0, then - has higher precedence:

10 - 10 / 10

res0: Int = 9

117



12 Abstract Syntax and Parsing

Recall from Chapter 11 that the concrete syntax of a programming language is a set of strings
(i.e., sequences of characters in an alphabet). A grammar is an inductive definition for describ-
ing a inductive set of strings.

A grammar is ambiguous when there exists at least one sentence in the language that can
be generated by the grammar in more than one way. What this means is that the string has
multiple distinct parse trees or derivations, leading to different interpretations of the program’s
tree structure.

The abstract syntax of a programming language makes explicit a program’s tree structure
(sometimes also called terms).

A parser converts concrete syntax into abstract syntax, which has deal with ambiguity. A
common (though not only) source of ambiguity are infix operators, which can be disambiguated
by making explicit associativity and precedence.

12.1 Abstract Syntax

Consider again the grammar of expressions involving the / and - operators in Table 11.2, with
subscripts to make explicit the instances of the symbols:

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒1 / 𝑒2 ∣ 𝑒1 - 𝑒2 (12.1)

To represent expressions 𝑒 in Scala, we declare the following types and case classes:

sealed trait Expr // e ::=
case class N(n: Int) extends Expr // n
case class Divide(e1: Expr, e2: Expr) extends Expr // | e1 / e2
case class Minus(e1: Expr, e2: Expr) extends Expr // | e1 - e2

defined trait Expr
defined class N
defined class Divide
defined class Minus

118



We define a new type Expr (i.e., a trait). Each case class is a constructor for an expression
𝑒 of type Expr corresponding to one of the productions defining the non-terminal 𝑒.

If we rewrite the above grammar (Equation 12.1) to use these constructor names in each
production, we get the following:

expressions Expr 𝑒 ∶∶= N(𝑛)
∣ Divide(𝑒1, 𝑒2)
∣ Minus(𝑒1, 𝑒2)

integers 𝑛
(12.2)

An example sentence in this language is

Minus(N(10), Divide(N(10), N(10)))

res1: Minus = Minus(e1 = N(n = 10), e2 = Divide(e1 = N(n = 10), e2 = N(n = 10)))

which corresponds to the following sentence in the first grammar:

10 - 10 / 10

Observe that a different sentence in the second grammar (Equation 12.2)

Divide(Minus(N(10), N(10)), N(10))

res2: Divide = Divide(
e1 = Minus(e1 = N(n = 10), e2 = N(n = 10)),
e2 = N(n = 10)

)

also corresponds to the sentence 10 - 10 / 10 in the first grammar (Equation 12.1) (with a
different parse tree). Thus, while the first grammar is ambiguous, the second one is unambigu-
ous.

In a language implementation, we do not want to be constantly worrying about the “grouping”
or parsing of a string (i.e., resolving ambiguity), so we prefer to work with terms in this second
grammar. We call this second grammar, abstract syntax, where the tree structure is evident.
Observe that parentheses around each sub-expression avoids ambiguity.

Each instance of case class is a node in an n-ary tree, and each argument of a non-terminal
type to a constructor is a sub-tree. For example, the term

119



Minus(N(10), Divide(N(10), N(10)))

res3: Minus = Minus(e1 = N(n = 10), e2 = Divide(e1 = N(n = 10), e2 = N(n = 10)))

can be read visually as the following:

Minus

N(10) Divide

N(10) N(10)
And thus the first phase of language tool is the parser that converts the concrete syntax of
strings into the abstract syntax of terms (i.e., trees).

Because the concrete syntax is more concise visually and human friendly, it is standard practice
to give (ambiguous) grammars like the first grammar above (Equation 12.1) and treat them as
the corresponding abstract syntax specification given in the second grammar (Equation 12.2).
In other words, we give a grammar that define the strings of a language and leave it as an
implementation detail of the parser to convert strings to the appropriate terms or abstract
syntax trees. We even often draw abstract syntax trees using concrete syntax notation, such
as in Figure 12.1a.

12.2 Parsing

Parsing is a large topic in terms of both deep theory and innovative tools. Thus, the theoret-
ical and practical aspects are covered in more depth in theory of computation and compiler
construction courses, respectively.

We use parsers daily, translating text that we can read and write into data structures tha
machines can understand. The range of kinds of parsers is also enormous: from simple regular
expression-based pattern matchers that run inside packet filters on the Internet to complex
natural language parsers that take in extract structure out of natural language sentences. As
such, parsing is arguably one of most successful applications of theoretical computer science
into practice.

Parsers for programming languages are usually somewhere in between: they have inductive
structure (e.g., matching parentheses) that require more than regular-expression parsers but
not as complicated as natural language with all its inherent ambiguities and context-sensitivity

120



-

10 /

10 10
(a) An abstract syntax tree using concrete syn-

tax operators.

𝑒

𝑒

𝑛(10)

- 𝑒

𝑒

𝑛(10)

/ 𝑒

𝑛(10)
(b) The corresponding parse tree using the am-

biguous grammar in Equation 12.1.

Figure 12.1: Consider the abstract syntax tree Minus(N(10), Divide(N(10), N(10))). We
show an abstract syntax tree and the corresponding parse tree with the ambiguous
grammar shown in Equation 12.1.

(though the syntax of real-world programming languages do sometimes extend beyond context-
free).

12.2.1 Top-Down Parsing

There are numerous parsing algorithms with different tradeoffs that are better studied in a com-
piler construction course. However, all tools or libraries for creating parsers for programming
languages generally involve specifying a BNF-like grammar.

Building parsers can get complex quickly even with a parsing library, so we focus here simply
on restricted uses of such libraries to build intuitions for context-free grammars.

We consider a kind of library for parsers called combinator parsers. A combinator is a kind of
higher-order function (e.g., a function that takes another function as input). A combinator-
parsing library is one where the user specifies the grammar simply as calls to the library to
build a parser from other parsers, along with callback functions. Combinator parsing libraries
generally help us implement some form of recursive-descent parsing, which we can think of
simply automating the top-down leftmost parsing derivation and trying productions left-to-
right until finding a prefix match.

Thus, they work best (1) when the grammar is unambiguous so that the top-down derivation is
deterministic and (2) when there is no left recursion so that each top-down leftmost derivation
step makes progress consuming some prefix of the input string.

121



Scala Parser Combinators Library

Run the following cell to load the Scala Parser Combinators library.

Listing 12.1 scala.util.parsing.combinator._

import $ivy.`org.scala-lang.modules::scala-parser-combinators:2.4.0`

import $ivy.$

Let us consider our object language JavaScripty with number literals and addition from our
abstract syntax tree discussion (Section 9.3.2.1).

sealed trait Expr // e ::=
case class N(n: Double) extends Expr // n
case class Plus(e1: Expr, e2: Expr) extends Expr // | e1 + e2

defined trait Expr
defined class N
defined class Plus

We give a grammar corresponding to the abstract syntax with concrete syntax operators:

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒1 + 𝑒2 (12.3)

Note that we gave this same grammar as comments in the Scala code above.

Observe that this grammar given above (Equation 12.3) for JavaScripty with number literals
and + expressions is ambiguous. Recall that an ambiguous grammar means there is a sentence
in the language described by the grammar with more than one parse tree (or equivalently,
more than one parsing derivation). For example, the sentence 1 + 2 + 3 (i.e., 𝑛(1) + 𝑛(2) +
𝑛(3) with lexical analysis) has two parse trees with this grammar. It also has left recursion in
that the production

𝑒 ∶∶= 𝑒 + 𝑒
has the 𝑒 non-terminal expanding to a sentential form with itself on the left.

122

https://github.com/scala/scala-parser-combinators


12.2.1.1 Left Recursion and Top-Down Parsing

From Section 11.2.3.1, we know how to refactor the grammar to disambiguate for associativity.
However, to make the infix binary + operator left associative, the resulting grammar has still
left recursion.

Left Recursion and Top-Down Parsing

To use simple recursive-descent parsing and the Scala Parser Combinator library, we
cannot use a grammar with left recursion.

Intuitively, left recursion causes an infinite recursion in a simple recursive descent parser be-
cause we do not know how far we have to “lookahead” to choose between expanding with a
recursive production or a base case production.

𝑒 ⟹ 𝑒 + 𝑒
⟹ 𝑒 + 𝑒 + 𝑒
⟹ 𝑒 + 𝑒 + 𝑒 + 𝑒
⟹ …

12.2.1.2 Restricting the Concrete Syntax

We consider subsequentlyin ?@sec-ebnf how we can parse left-associative operators with a
recursive-descent parser. Here, we simply restrict the concrete syntax to simplify parsing (i.e.,
we “cheat” by changing the concrete syntax of the language). For example, for JavaScripty with
number literals and addition, we consider the following grammar for the concrete syntax:

terms 𝑡 ∶∶= 𝑛 ∣ ( 𝑒 )
expressions 𝑒 ∶∶= 𝑡1 + 𝑡2

(12.4)

with 𝑡 as the start symbol. Take special note that the parentheses here ( ) are part of the
concrete syntax of the object language. Compare and contrast this restricted, unambiguous
grammar with the ambiguous grammar corresponding directly to the abstract syntax (Equa-
tion 12.3). Observe that it is similar to the ambiguous grammar in Equation 12.3 but does
not accept the same language. Essentially, we have eliminated ambiguity by “forcing” the
JavaScripty programmer to write enough parentheses ( ) to state what “grouping” they want.
But also note that there is no left recursion in this restricted grammar.

A 𝑡 here is what’s called an s-expression (restricted to these particular terminal symbols). S-
expressions are commonly used as a serialization format because it is easy to parse. They are
used as the concrete syntax for Lisp and Lisp-derived programming languages (e.g., Scheme,
Racket), though all operators are written in prefix notation.

123



12.2.1.3 Implementing a Parser

To connect this restricted grammar to a parser implementation, let us give alternative names
to the non-terminal symbols:

terms 𝑡, term ∶∶= num ∣ ( expr )
expressions 𝑒, expr ∶∶= term + term

numbers 𝑛, num
(12.5)

We can now implement the restricted grammar (Equation 12.4) directly using the Scala Parsing
Combinator Library:

object ExprParser extends scala.util.parsing.combinator.RegexParsers {
def term: Parser[Expr] =

num ^^ { (n: String) => N(n.toDouble) } |
"(" ~ expr ~ ")" ^^ { case _ ~ e ~ _ => e }

def expr: Parser[Expr] =
term ~ "+" ~ term ^^ { case e1 ~ _ ~ e2 => Plus(e1, e2) }

def num: Parser[String] =
"""-?(\d+(\.\d*)?|\d*\.\d+)([eE][+-]?\d+)?""".r

def parse(str: String): Either[String, Expr] = parseAll(term, str) match {
case Success(e, _) => Right(e)
case Failure(msg, _) => Left(s"Failure: $msg")
case Error(msg, _) => Left(s"Error: $msg")

}
}

defined object ExprParser

First, observe that we have translated each non-terminal term, expr, num into a method term,
expr, and num that returns a value of type Parser[A] for some type A, respectively. This
structure is indicative of a recursive-descent parser where we define a set of mutually-recursive
parsing methods—one for each non-terminal in the grammar of interest.

Then, the scala.util.parsing.combinator.RegexParsers trait provides a number of li-
brary methods that we use to define the expr, term, and num methods. These methods, like
| and ~, make it look like we are writing a BNF grammar. We see that the | method calls
separate grammar productions and the ~ method calls correspond to sequencing symbols on

124



the right-hand side of a production. Ignore the ^^ method calls with the function arguments
in { … } on the right for the moment.

The parameter A to the Parser[A] type is the result type of the parser. For example, the
method term: Parser[Expr] returns a parser whose result type is an abstract syntax tree
value Expr, while the num: Parser[String] returns a parser whose result type is a String
value.

12.2.1.4 term ∶∶= num

Let us focus on the implementation on the term method and the first part of the implementa-
tion:

num ^^ { (n: String) => N(n.toDouble) } |

corresponding to the first production:

term ∶∶= num

To implement this production, this code calls the num method. The num method returns a
Parser[String] that recognizes its input as a number, returning the matched String. The
^^ library method call enables specifying a semantic action that translates a Parser[String]
to a Parser[Expr] using the function

{ (n: String) => N(n.toDouble) }

of type String => Expr. In this case, the String given in n is converted to a Double using
Scala’s toDouble method and then passed to the N constructor defined above (that is an
Expr).

We define an “interface” method parse: String => Either[String, Expr] that does the
parsing by calling parseAll from the library, passing expr as the start symbol and str as the
input string to parse.

ExprParser.parse("1")
ExprParser.parse("<should not parse>")

res7_0: Either[String, Expr] = Right(value = N(n = 1.0))
res7_1: Either[String, Expr] = Left(
value = "Failure: '(' expected but '<' found"

)

125



We have defined the parse to return an Either[String, Expr]. A Either is used similarly
to an Option except when we want to have something more in the None case. In this case, we
either give a error message using the Left case or return resulting Expr using the Right case.
It is a standard programming convention that the Left case of an Either is generally used
for the “error case,” while Right is used for “success.”

12.2.1.5 term ∶∶= ( expr ) and expr ∶∶= term + term

Now focus on the second part of implementation of the term implementation:

"(" ~ expr ~ ")" ^^ { case _ ~ e ~ _ => e }

corresponding to the second production:

term ∶∶= ( expr )

The ~ method produces a Parser[A ~ B] sequencing a Parser[A] and a Parser[B]. In this
case, we have a a Parser[String ~ Expr ~ String] that we translate to a Parser[Expr]
using this function:

{ case _ ~ e ~ _ => e }

Note that the ~ type constructor is a case class defined by the Scala Combinator Parser
Library that we can see as simply a custom tuple type.

Also note that the "(" and ")" expressions in the above have type Parser[String]. The
Scala Combinator Parsing Library (specifically in RegexParsers) defines implicit conversions
that creates a Parser[String] that accepts a single String. Thus, this more specific pattern
matching in the semantic action function would be behave the same:

"(" ~ expr ~ ")" ^^ { case "(" ~ e ~ ")" => e }

The expr method definition is now relatively straightforward:

def expr: Parser[Expr] =
term ~ "+" ~ term ^^ { case e1 ~ _ ~ e2 => Plus(e1, e2) }

in that it creates a Plus node out of two Exprs.

We can now test out our parser with + expressions in concrete syntax:

126



ExprParser.parse("((1 + 2) + 3)")
ExprParser.parse("(1 + (2 + 3))")

res8_0: Either[String, Expr] = Right(
value = Plus(e1 = Plus(e1 = N(n = 1.0), e2 = N(n = 2.0)), e2 = N(n = 3.0))

)
res8_1: Either[String, Expr] = Right(
value = Plus(e1 = N(n = 1.0), e2 = Plus(e1 = N(n = 2.0), e2 = N(n = 3.0)))

)

And we can see that a + expression without parentheses fails to parse (as expected):

ExprParser.parse("1 + 2 + 3")

res9: Either[String, Expr] = Left(value = "Failure: end of input expected")

12.2.1.6 num

In the parser grammar from Equation 12.5, we consider num a terminal and never specified
what sentences are in the language of num (i.e., ℒ(num)). In this implementation, we use the
following regular expression:

def num: Parser[String] =
"""-?(\d+(\.\d*)?|\d*\.\d+)([eE][+-]?\d+)?""".r

(i.e., a value of type Regex in Scala). The RegexParsers trait also defines an implicit conversion
that creates a Parser[String] out of a Regex value, which is what we use here.

The following strings are matched by this regular expression:

ExprParser.parse("1")
ExprParser.parse("-1")
ExprParser.parse(".1")
ExprParser.parse("2e2")
ExprParser.parse("2e-10")
ExprParser.parse("2e+10")
ExprParser.parse("2E10")

127



res10_0: Either[String, Expr] = Right(value = N(n = 1.0))
res10_1: Either[String, Expr] = Right(value = N(n = -1.0))
res10_2: Either[String, Expr] = Right(value = N(n = 0.1))
res10_3: Either[String, Expr] = Right(value = N(n = 200.0))
res10_4: Either[String, Expr] = Right(value = N(n = 2.0E-10))
res10_5: Either[String, Expr] = Right(value = N(n = 2.0E10))
res10_6: Either[String, Expr] = Right(value = N(n = 2.0E10))

128



13 Exercise: Syntax

Learning Goals

The primary learning goals of this assignment are to build intuition for the following:

• working with abstract syntax trees;
• how grammars are used to specify the syntax of programming languages; and
• the distinction between concrete and abstract syntax.

Instructions

This assignment asks you to write Scala code. There are restrictions associated with how you
can solve these problems. Please pay careful heed to those. If you are unsure, ask the course
staff.

Note that ??? indicates that there is a missing function or code fragment that needs to be
filled in. Make sure that you remove the ??? and replace it with the answer.

Use the test cases provided to test your implementations. You are also encouraged to write
your own test cases to help debug your work. However, please delete any extra cells you may
have created lest they break an autograder.

Imports

import $ivy.$ , org.scalatest._, events._, flatspec._

defined function report
defined function assertPassed
defined function passed
defined function test

import $ivy.$

129



Listing 13.1 org.scalatest._

// Run this cell FIRST before testing.
import $ivy.`org.scalatest::scalatest:3.2.19`, org.scalatest._, events._, flatspec._
def report(suite: Suite): Unit = suite.execute(stats = true)
def assertPassed(suite: Suite): Unit =
suite.run(None, Args(new Reporter {

def apply(e: Event) = e match {
case e @ (_: TestFailed) => assert(false, s"${e.message} (${e.testName})")
case _ => ()

}
}))

def passed(points: Int): Unit = {
require(points >=0)
if (points == 1) println("*** � Tests Passed (1 point) ***")
else println(s"*** � Tests Passed ($points points) ***")

}
def test(suite: Suite, points: Int): Unit = {
report(suite)
assertPassed(suite)
passed(points)

}

Listing 13.2 scala.util.parsing.combinator._

// Run this cell FIRST before building your parser.
import $ivy.`org.scala-lang.modules::scala-parser-combinators:2.4.0`

13.1 Abstract Syntax Trees

Let us consider the (abstract) syntax of a language of Boolean expressions:

Boolean expressions 𝑒 ∶∶= 𝑥 ∣ ¬𝑒1 ∣ 𝑒1 ∧ 𝑒2 ∣ 𝑒1 ∨ 𝑒2
variables 𝑥

13.1.1 Defining an Inductive Data Type

We can write explicitly the above grammar with abstract syntax tree nodes:

130



Boolean expressions BExpr 𝑒 ∶∶= Var(𝑥)
∣ Not(𝑒1)
∣ And(𝑒1, 𝑒2)
∣ Or(𝑒1, 𝑒2)

Exercise 13.1 (5 points). Define an inductive data type BExpr in Scala following the above
grammar. Use the the names given above for the constructors, and use the Scala type String
to represent variable names.

Edit this cell:

???

Tests

13.1.2 Converting to Negation Normal Form

Exercise 13.2 (10 points). Write a function nnf to convert Boolean formulas from the above
grammar to their Negation Normal Form (NNF). A Boolean formula is said to be in NNF iff
the negation operator ¬ (i.e., Not) is only applied to the variables. For example, the following
formula is in NNF because negation is only applied to 𝐴 or 𝐵, or both of which are variables:

(𝐴 ∧ ¬𝐵) ∨ (𝐵 ∧ ¬𝐴) .

On the other hand, the following formula is not in NNF as negation is applied to a complex
expression:

¬(𝐴 ∨ ¬𝐵) ∧ (¬𝐵 ∨ 𝐶) .

The negation normal form of the above formula is as follows:

(¬𝐴 ∧ ¬𝐵) ∧ (¬𝐵 ∨ 𝐶) .

Edit this cell:

???

131



Notes

In general, a formula can be converted to NNF by applying three rules:

Rule 1 Double negation is cancelled: ¬(¬𝑒) = 𝑒 for any Boolean formula 𝑒.
Rule 2 De Morgan’s Law for conjunction: ¬(𝑒1 ∧𝑒2) = ¬𝑒1 ∨¬𝑒2 for any two Boolean formulas

𝑒1 and 𝑒2.
Rule 3 De Morgan’s Law for disjunction: ¬(𝑒1 ∨𝑒2) = ¬𝑒1 ∧¬𝑒2 for any two Boolean formulas

𝑒1 and 𝑒2.

The nnf function will have a case for each of the above rule. In addition, the function will also
need to handle the following cases:

• A variable 𝑥 or its negation ¬𝑥 is already in NNF.
• An expression 𝑒1 ∧ 𝑒2 is in NNF iff 𝑒1 and 𝑒2 are in NNF.
• An expression 𝑒1 ∨ 𝑒2 is in NNF iff 𝑒1 and 𝑒2 are in NNF.

If you handle all the 7 cases described above, then your nnf function will likely be correct,
though of course, you will want to test it.

Tests

13.1.3 Substitution

Exercise 13.3 (5 points). Write a function subst that substitutes in a given Boolean expres-
sion with another expression for a given variable name. For example, substituting in

¬(𝐴 ∨ 𝐵) ∧ (¬𝐵 ∨ 𝐶)

with 𝐷 for 𝐵 yields
¬(𝐴 ∨ 𝐷) ∧ (¬𝐷 ∨ 𝐶) .

Edit this cell:

???

132



Tests

13.2 Concrete Syntax

13.2.1 Precedence Detective

Consider the Scala binary expressions

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒1 - 𝑒2 ∣ 𝑒1 << 𝑒2
integers 𝑛

Exercise 13.4 (5 points). Write Scala expressions to determine if - has higher precedence than
<< or vice versa. To do, write an expression bound to e_no_parens that uses no parentheses.
Then, bind to e_higher_- the expression that adds parentheses to the e_no_parens expression
corresponding to the case if - has higher precedence than <<, and bind to e_higher_<< the
expression adds parentheses corresponding to the other case.

Edit this cell:

Make sure that you are checking for precedence and not for left or right associativity.

???

val e_higher_- = ???

val e_higher_« = ???

- Partial implementation, but there are significant issues in the Scala expressions.
- Major issues:
- Doesn't check for operator precedence between `-` and `<<`.
- Incorrect or missing parentheses in `e_higher_-` or `e_higher_<<`.
- Fail most test cases.

**Approaching (A)**

val e_no_parens = ???

val e_higher_- = ???

val e_higher_« = ???

133



- Mostly correct implementation, but might fail some test cases or have minor errors.
- Attempts to check for relative precedence of `-` and `<<` with parentheses but might misplace them.

**Proficient (P) or Exceeding (E)**

val e_no_parens = ???

val e_higher_- = ???

val e_higher_« = ???

- Fully correct implementation of all expressions.
- Correctly binds `e_no_parens`, `e_higher_-`, and `e_higher_<<` to appropriately test for precedence of `-` and `<<`.
- Passes all test cases, including:
- Ensuring that e_no_parens == e_higher_- or e_no_parens == e_higher_<<.
- Ensuring that e_higher_- != e_higher_<<.

// END SOLUTION
:::

#### Assertions {.unnumbered}

:::: {.content-hidden when-format="pdf"}

::: {.cell nbgrader='{"grade":true,"grade_id":"detective_tests","locked":true,"points":5,"schema_version":3,"solution":false,"task":false}' execution_count=11}
``` {.scala .cell-code}
assert(e_no_parens == e_higher_- || e_no_parens == e_higher_<<)
assert(e_higher_- != e_higher_<<)
passed(5)

cmd4.sc:1: not found: value e_no_parens
val res4_0 = assert(e_no_parens == e_higher_- || e_no_parens == e_higher_<<)

^cmd4.sc:1: not found: value e_higher_-
val res4_0 = assert(e_no_parens == e_higher_- || e_no_parens == e_higher_<<)

^cmd4.sc:1: not found: value e_no_parens
val res4_0 = assert(e_no_parens == e_higher_- || e_no_parens == e_higher_<<)

^cmd4.sc:1: not found: value e_higher_<<
val res4_0 = assert(e_no_parens == e_higher_- || e_no_parens == e_higher_<<)

^cmd4.sc:2: not found: value e_higher_-
val res4_1 = assert(e_higher_- != e_higher_<<)

^cmd4.sc:2: not found: value e_higher_<<

134

val res4_1 = assert(e_higher_- != e_higher_<<)
^Compilation Failed

:
Compilation Failed

::::

Explanation

Exercise 13.5 (5 points). Explain how you arrived at the relative precedence of - and <<
based on the output that you saw in the Scala interpreter.

Edit this cell:

???

13.3 Parse Trees

Consider the following grammar:

expressions 𝑒 ∶∶= 𝑥 ∣ 𝑒 ? 𝑒 : 𝑒
variables 𝑥 ∶∶= a ∣ b (13.1)

Consider the following data type for representing parse trees:

sealed trait ParseTree
case class Leaf(term: String) extends ParseTree
case class Node(nonterm: String, children: List[ParseTree]) extends ParseTree

defined trait ParseTree
defined class Leaf
defined class Node

Observe that a ParseTree is just an 𝑛-ary tree containing Strings. A Leaf is a terminal
containing the lexemes (i.e., letters from the alphabet), while a Node is represents a non-
terminal with a String for the name of the non-terminal a list of children ParseTrees.

For example, the following are ParseTrees for this grammar (Equation 13.1):

135

val p1 = Node("x", Leaf("a") :: Nil)
val p2 = Node("e", Node("x", Leaf("a") :: Nil) :: Nil)

p1: Node = Node(nonterm = "x", children = List(Leaf(term = "a")))
p2: Node = Node(
nonterm = "e",
children = List(Node(nonterm = "x", children = List(Leaf(term = "a"))))

)

We provide a function that pretty-prints a ParseTree for this grammar (Equation 13.1).

def pretty(t: ParseTree): Option[String] = {
val alphabet = Set("a", "b", "?", ":")
t match {

// e ::= x
case Node("e", (x @ Node("x", _)) :: Nil) => pretty(x)
// e ::= e ? e : e
case Node("e", (e1 @ Node("e", _)) :: Leaf("?") :: (e2 @ Node("e", _)) :: Leaf(":") :: (e3 @ Node("e", _)) :: Nil) =>

for { s1 <- pretty(e1); s2 <- pretty(e2); s3 <- pretty(e3) }
yield s"$s1 ? $s2 : $s3"

// x ::= a
case Node("x", Leaf("a") :: Nil) => Some("a")
// x ::= b
case Node("x", Leaf("b") :: Nil) => Some("b")
// failure
case _ => None

}
}

pretty(p1)
pretty(p2)

defined function pretty
res6_1: Option[String] = Some(value = "a")
res6_2: Option[String] = Some(value = "a")

Since it is possible to have ParseTrees that are not recognized by this grammar, the pretty
function has return type Option[String]. Calling pretty on ParseTrees that are not in this
grammar return None:

136

pretty(Leaf("a"))
pretty(Node("x", Leaf("c") :: Nil))
pretty(Node("y", Leaf("a") :: Nil))

res7_0: Option[String] = None
res7_1: Option[String] = None
res7_2: Option[String] = None

Note that the pretty function makes use of Scala’s for-yield expressions, which you do not
need to understand for this exercise.

Exercise

Exercise 13.6 (5 points). Give a parse tree for the sentence in the grammar a ? b : a.

Edit this cell:

???

Assertion

Exercise

Exercise 13.7 (10 points). Show that this grammar (Equation 13.1) is ambiguous by giving
two parse trees for the sentence in the grammar a ? b : a ? b : a.

Edit this cell:

???

Assertions

13.4 Defining Grammars

In this question, we define a BNF grammar for floating-point numbers that are made up of a
fraction (e.g., 5.6 or 3.123 or -2.5) followed by an optional exponent (e.g., E10 or E-10).

More precisely for this exercise, our floating-point numbers

□ must have a decimal point,

137

□ do not have leading zeros,
□ can have any number of trailing zeros,
□ non-zero exponents if it exists,
□ must have non-zero fraction to have an exponent, and
□ cannot have a ‘-’ in front of a zero number; also,
□ the exponent cannot have leading zeros.

The exponent, if it exists, is the letter E followed by an integer. For example, the following are
floating-point numbers: 0.0, 3.5E3, 3.123E30, -2.5E2, -2.5E-2, 3.50, and 3.01E2.

The following are examples of strings that are not floating-point numbers by our definition: 0,
-0.0, 3.E3, E3, 3.0E4.5, and 4E4.

For this exercise, let us assume that the tokens are characters in the following alphabet Σ:

Σ def= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, E, -, . }

Exercise 13.8 (10 points). Translate a grammar into a parser FloatParser.float: Parser[String]
using the Scala Parsing Combinator Library that recognizes the language of floating-point
numbers described above. Since we do not care about the correctness of the grammar, we let
parse result simply be the input string.

We suggest that you first use the scratch cell below to give a grammar in BNF notation. Your
grammar should be completely defined using the alphabet above as the terminals (i.e., it should
not count on a non-terminal that it does not itself define).

SCRATCH CELL

Edit this cell:

???

Notes

• The success[A](a: A): Parser[A] method corresponds to an 𝜀 production in BNF. It
returns a parser that is successful without consuming any input yielding the parse result
a. If you use it in your parser, make sure it is the last production for the non-terminal.

• We provide some helper functions concat2: String ~ String => String, concat3: String ~ String ~ String => String,
etc. that simply concatenate their input strings together. These helper functions are
the only semantic actions you need.

• We have provided some basic parsers sign, anyOneToNine, digit, zeroOrMoreDigits
that you may use if you like.

• You may edit the parse interface function that we have provided to start from a different
non-terminal while you’re developing, but make sure it is float in the end and that your
starting non-terminal is float. Alternatively, you may add additional such interface
functions with a different name for your testing.

138

Tests

139

14 Static Scoping

Let us consider our object language JavaScripty with number literals and addition from our
abstract syntax tree discussion (Section 9.3.2.1). Now, let’s extend it with variable uses and
binding.

What makes a language go beyond what we might consider a calculator language is adding
variable uses and binding. In the following, we show variable binding const in JavaScript,
let in OCaml, and val in Scala. We have intentionally aligned them so that their syntactic
differences are superficial (i.e., essentially keywords that introduce binding).

14.1 JavaScripty (JavaScript)

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒1 + 𝑒2 number literals and addition
∣ 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2 variable uses and binding (14.1)

14.2 Lettuce (OCaml)

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒1 + 𝑒2 number literals and addition
∣ 𝑥 ∣ let 𝑥 = 𝑒1 in 𝑒2 variable uses and binding

14.3 Smalla (Scala)

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑒1 + 𝑒2 number literals and addition
∣ 𝑥 ∣ val 𝑥 = 𝑒1; 𝑒2 variable uses and binding

14.4 JavaScripty: Variable Uses and Binding

Let us consider extending the representation of the abstract syntax of JavaScripty in Scala
with variable uses and bindings:

140

sealed trait Expr // e ::=
case class N(n: Double) extends Expr // n
case class Plus(e1: Expr, e2: Expr) extends Expr // | e1 + e2
case class Var(x: String) extends Expr // | x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // | const x = e1; e2

defined trait Expr
defined class N
defined class Plus
defined class Var
defined class ConstDecl

As we discuss in Section 4.2 regarding scoping in Scala, the scope of a variable binding is the
part of the program where that variable can be used and refers to that particular binding.
Static scoping is where the scope of a variable can be determined by looking directly at the
source code.

We have structured our abstract syntax so that the scope of a variable binding is apparent. In
particular, the ConstDecl(𝑥 , 𝑒1 , 𝑒2) is the AST node that represents binding a JavaScripty
variable 𝑥 (whose name is stored in Scala as x: String) to the JavaScripty value obtained by
evaluating expression 𝑒1 and whose scope is exactly the JavaScripty expression 𝑒2. Note that
in particular, 𝑥 is not in scope in 𝑒1.

14.5 Free Variables

We can thus define a function to compute the free variables of a JavaScripty expression (rep-
resented in Scala) as follows:

def freeVars(e: Expr): Set[Var] = e match {
case N(_) => Set.empty
case Plus(e1, e2) => freeVars(e1) union freeVars(e2)
case x @ Var(_) => Set(x)
case ConstDecl(x, e1, e2) => freeVars(e1) union (freeVars(e2) - Var(x))

}

defined function freeVars

For the N(_) case, there are no free-variable uses. For the Plus(e1, e2) case, the Plus node
does that change the set of free variables, so it is union of the free variables of e1 and e2.

141

The x @ Var(_) case is a free-variable use, so the singleton set Set(x) is the set of free
variables. The @ pattern in Scala enables binding a variable and matching a specific pattern.

The ConstDecl(x, e1, e2) case shows that it is a binding construct where the variable named
by x is not in scope in e1 but is in scope in e2. Uses of the variable named by x in e2 thus
must be removed, as they are no longer free outside of this ConstDecl expression.

To see freeVars in action, let us consider a JavaScripty expression in concrete syntax:

const four = (2 + 2); (four + four)

We can represent the above JavaScripty expression as an abstract syntax tree in Scala as
follows, and let us bind Scala variables to all sub-expressions:

val e_n = N(2)
val e_plusnn = Plus(e_n, e_n)
val e_var = Var("four")
val e_plusvarvar = Plus(e_var, e_var)
val e_constdecl = ConstDecl("four", e_plusnn, e_plusvarvar)

e_n: N = N(n = 2.0)
e_plusnn: Plus = Plus(e1 = N(n = 2.0), e2 = N(n = 2.0))
e_var: Var = Var(x = "four")
e_plusvarvar: Plus = Plus(e1 = Var(x = "four"), e2 = Var(x = "four"))
e_constdecl: ConstDecl = ConstDecl(
x = "four",
e1 = Plus(e1 = N(n = 2.0), e2 = N(n = 2.0)),
e2 = Plus(e1 = Var(x = "four"), e2 = Var(x = "four"))

)

We then compute the free variables with freeVars for each of these JavaScripty expressions:

val fv_n = freeVars(e_n)
val fv_plusnn = freeVars(e_plusnn)
val fv_var = freeVars(e_var)
val fv_plusvarvar = freeVars(e_plusvarvar)
val fv_constdecl = freeVars(e_constdecl)

fv_n: Set[Var] = Set()
fv_plusnn: Set[Var] = Set()
fv_var: Set[Var] = Set(Var(x = "four"))
fv_plusvarvar: Set[Var] = Set(Var(x = "four"))
fv_constdecl: Set[Var] = Set()

142

Note it is simply one software engineering decision for the freeVars function here to have
type Expr => Set[Var], that is, it returns a set of values with data-class type Var. Another
possible choice is Expr => Set[String], which instead returns a set of the strings within the
Var uses in the given Expr. The former does convey a more specific type constraint; however,
the latter has the same information. A good exercise is to rewrite freeVars to have type
Expr => Set[String] to see the difference.

Exercise 14.1. Rewrite the freeVars function above to have the following type:

def freeVarsAlt(e: Expr): Set[String] = ???

defined function freeVarsAlt

14.6 Value Environments and Evaluation

As we discuss in Section 4.1.1 regarding value bindings in Scala, the meaning of an expression
depends on the meaning of the free variables of an expression. One way to give meaning to
free-variable uses is by referencing an environment that specifies the assumed meaning of each
variable.

Let us consider a value environment for JavaScripty represented in Scala as a Map[Var, Double]:

type Env = Map[Var, Double]

defined type Env

Note that like with freeVars above in Section 14.5, it would also be reasonable to choose
type Env = Map[String, Double] for the value environment mapping the variables names
to their values.

As compared to the eval for number literals and addition in Section 9.3.2.1, our eval also
takes a value environment env:

def eval(env: Env, e: Expr): Double = e match {
case N(n) => n
case Plus(e1, e2) => eval(env, e1) + eval(env, e2)
case x @ Var(_) => env(x)
case ConstDecl(x, e1, e2) => {

val v1 = eval(env, e1)
eval(env + (Var(x) -> v1), e2)

}
}

143

defined function eval

The x @ Var(_) case looks up the variable in the value environment env, while the
ConstDecl(x, e1, e2) case extends the environment with a binding for evaluating e2.

Let us a define a “public-facing interface” function that calls eval with an empty environment
(with some informational logging):

def evalExpr(e: Expr): Double = {
print(s"$e � ")
val v = eval(Map.empty, e)
println(s"$v")
v

}

defined function evalExpr

It works fine for number literals and addition:

val v_n = evalExpr(e_n)
val v_plusnn = evalExpr(e_plusnn)

N(2.0) � 2.0
Plus(N(2.0),N(2.0)) � 4.0

v_n: Double = 2.0
v_plusnn: Double = 4.0

However, it fails unexpectedly for any expression with a free-variable use

val v_var = evalExpr(e_var)

val v_plusvarvar = evalExpr(e_plusvarvar)

as variables in scope must have a binding in the environment.

Let’s make our requirement that evalExpr can only evaluate closed expressions explicit:

144

def evalExpr(e: Expr): Double = {
require(freeVars(e).isEmpty, s"Expression $e is not closed.")
print(s"$e � ")
val v = eval(Map.empty, e)
println(s"$v")
v

}

defined function evalExpr

val v_plusvarvar = evalExpr(e_plusvarvar)

val v_constdecl = evalExpr(e_constdecl)

14.7 Renaming Bound Variables

Consider again the JavaScripty expression, along with two rewrites:

14.8 JavaScripty (JavaScript)

const four = (2 + 2); (four + four)

const x = (2 + 2); (x + x)

const fuzz = (2 + 2); (fuzz + fuzz)

14.9 Lettuce (OCaml)

let four = (2 + 2) in (four + four)

let x = (2 + 2) in (x + x)

let fuzz = (2 + 2) in (fuzz + fuzz)

145

14.10 Smalla (Scala)

val four = (2 + 2); (four + four)

val x = (2 + 2); (x + x)

val fuzz = (2 + 2); (fuzz + fuzz)

Even though these expressions are different in the concrete syntax and quite different for a
human user, they are effectively the same for a language implementation. They certainly have
the same meaning according to the evalExpr function defined above in Section 14.6.

Just like with the “grouping” structure as in Section 12.1 above, we want to make evident the
binding structure of an expression. Therefore, we generally consider terms equivalent up to
the renaming of bound variables (e.g., we “see” the three expressions given above as the “same”
expression).

Renaming bound variables consistently is also called 𝛼-renaming (alpha-renaming) for histor-
ical reasons from the 𝜆-calculus (lambda-calculus). Similarly, this equivalence relation on
expressions is also called 𝛼-equivalence.

14.10.1 Higher-Order Abstract Syntax

One way to encode the binding structure into the abstract syntax representation is encode the
binding structure of the object language using the variable binding in the meta language:

object HOAS {
sealed trait Expr // e ::=
case class N(n: Double) extends Expr // n
case class Plus(e1: Expr, e2: Expr) extends Expr // | e1 + e2

// | x
case class ConstDecl(e1: Expr, e2: Double => Expr) extends Expr // | const x = e1; e2

}

defined object HOAS

Observe that there is no Expr AST node for variable uses in the object language, and instead
they are represented by variable uses in the meta language in the ConstDecl AST node. This
representation is called higher-order abstract syntax.

146

14.11 JavaScripty: Concrete Syntax: Declarations

Note that the JavaScripty grammar with const above (Equation 14.1) specifies the abstract
syntax using notation borrowed from the concrete syntax. The actual concrete syntax of
JavaScripty is less flexible than this abstract syntax to match the syntactic structure of
JavaScript. For example,

Plus(N(1), ConstDecl("a", N(2), Var("a")))

res14: Plus = Plus(
e1 = N(n = 1.0),
e2 = ConstDecl(x = "a", e1 = N(n = 2.0), e2 = Var(x = "a"))

)

is an abstract syntax tree that would never be produced by the parser. That is,

1 + const a = 2; a

results in a parse error.

The JavaScripty grammar with const above (Equation 14.1) read as concrete syntax is ambigu-
ous in multiple ways, including the relative precedence of const-bindings and +-expressions:

const b = 3; b + 4

JavaScript uses additional syntactic categories for “declarations” and “statements” layered on
top of expressions. Variable bindings with const are declarations (and not expressions).

Thus, we give a more restrictive grammar for JavaScripty with declarations and statements
matching the syntactic structure of JavaScript as follows:

declarations 𝑑 ∶∶= const 𝑥 = 𝑒; ∣ 𝑠 ∣ 𝑑1 𝑑2 ∣ 𝜀
statements 𝑠 ∶∶= 𝑒; ∣ { 𝑑 } ∣ ;
expressions 𝑒 ∶∶= (𝑒) ∣ ⋯

variables 𝑥

A declaration can be a const binding (with a trailing ;), a statement 𝑠, or a sequence of
declarations (i.e., 𝑑1 𝑑2 ∣ 𝜀 where we consider sequencing declarations right associative). A
statement can be an expression 𝑒 (with a trailing ;), a block { 𝑑 }, or an empty statement ;.
Note that JavaScript parsers (like Scala’s) have some rules for semi-colon ; inference to be a bit
more flexible than this grammar. In the concrete syntax, expressions 𝑒 can be parenthesized
(𝑒) and otherwise are value literals, n-ary expressions, etc.

147

To make JavaScripty variable declarations simpler, we also deviate slightly with respect to
static scoping rules. Whereas JavaScript (like Scala) considers all bindings to be in the same
scope in the same declaration list 𝑑, our JavaScripty ConstDecl bindings each introduce their
own scope. Essentially, we consider const 𝑥 = 𝑒1; 𝑑2 in JavaScripty as const 𝑥 = 𝑒1; { 𝑑2 }
in JavaScript.

148

15 Judgments

A judgment is a statement about syntactic objects, that is, asserts a relation on a set of objects.
The form of the relation itself is often called a judgment form. Judgments are used pervasively
in describing programming languages.

We have previously seen judgment forms, for example, relating an expression and a type:

𝑒 ∶ 𝜏

that is read “expression 𝑒 has type 𝜏 .” This relation takes two parameters: an expression 𝑒
and a type 𝜏 . The colon ∶ is simply punctuation. For readability, it is common for judgment
forms to use a mix of punctuation symbols. As parameters are meta-variables for syntactic
objects, they are typically written in italic font (e.g., 𝑒 and 𝜏).

Judgment forms are defined inductively using a set of inference rules. An inference rule takes
the following form:

𝐽1 𝐽2 ⋯ 𝐽𝑛
𝐽

where the meta-variable 𝐽 stands for a judgment. The judgments above the horizontal line
are the premises, while the judgment below the line is the conclusion. An inference rule states
that if the premises can be shown to hold, then the conclusion also holds (i.e., the premises are
sufficient to derive the conclusion). The set of premises may be empty, and such an inference
rule is called an axiom.

15.1 Grammars and Inference Rules

15.1.1 Example: Syntax

Recall from that a grammar defines inductively a set of syntactic objects. For example, we
can describe the natural numbers using a unary notation. We give an explicit name to the set
of syntactic objects describing natural numbers (i.e., we call the language of natural numbers
here Nat).

149

natural numbers Nat 𝑛 ∶∶= z ∣ s(𝑛) (15.1)

We now define the language of natural numbers using judgments and inference rules. Let
𝑛 ∈ Nat be the (unary) judgment form that says, “Syntactic object 𝑛 is an element of the set
we call Nat.”

𝑛 ∈ Nat
Zero

z ∈ Nat

Successor
𝑛 ∈ Nat

s(𝑛) ∈ Nat

Figure 15.1: Defining the judgment form 𝑛 ∈ Nat that says, “Syntactic object 𝑛 is an element
of the set we call Nat.”

We define the judgment form 𝑛 ∈ Nat with two inference rules named Zero and Successor.
Rule Zero is an axiom that says that z is an element of the set we call Nat. Rule Successor
says that s(𝑛) is an element in the set we call Nat if 𝑛 is an element in the set we call Nat.
The italicized if in the previous sentence corresponds to the horizontal line of the inference
rule. As a convention, we list the judgment form we are defining with a set of inference rules
as a header in a box.

In Section 12.1, we see a grammar as an inductive data type. For example, we might translate
the above grammar (Equation 15.1) into the following inductive data type in Scala:

sealed abstract class Nat
case object Z extends Nat
case class S(n: Nat) extends Nat

defined class Nat
defined object Z
defined class S

We can see the inference rules defining the judgment form 𝑛 ∈ Nat (Figure 15.1) as defining
the same thing as the grammar (Equation 15.1) — an inductively-defined set Nat. However,
we can also see the inference rules as defining a unary relation that judges when a 𝑛 is the set
named Nat, which we might translate into the following function in Scala:

def isNat(n: Nat): Boolean = n match {
// Zero
case Z => true
// Successor

150

case S(n) => isNat(n)
}

isNat(Z)
isNat(S(Z))
isNat(S(S(Z)))

defined function isNat
res1_1: Boolean = true
res1_2: Boolean = true
res1_3: Boolean = true

Of course, this function is a silly one to write, as it will always return true. That is, we have
this trivial meta-theorem:

Proposition 15.1 (All 𝑛s are elements of the set we call Nat). For all 𝑛, 𝑛 ∈ Nat.

A standard shorthand is that when we write a judgment “𝑛 ∈ Nat” in this context, we mean,
“the judgment 𝑛 ∈ Nat holds.”

The isNat function is called the characteristic function of the set Nat.

With this trivial meta-theorem, we see grammars and this form of inference rules interchange-
able for defining syntax. However, as inference rules are a more general form of inductive
definitions (in that they are 𝑛-ary relations), we generally use grammars to define syntax and
instead use inference rules to define semantics.

15.1.2 Key Intuition

While the function isNat function is silly, we see that the meta-language of judgment forms,
inference rules, and judgments in mathematical specification corresponds to function signa-
tures, function bodies, and function calls in code. Just like the that the meta-language of
meta-variables, grammars, and terms corresponds to types, inductive data type definitions,
and values.

151

15.2 Derivations of Judgments

A set of inference rules defines a judgment as the least relation closed under the rules. This
statement means a judgment holds if and only if we can compose applications of the inference
rules to demonstrate it. Such a demonstration is called a derivation of a judgment or sometimes
simply a derivation. A derivation is a tree where each node in the tree is an application of
an inference rule and whose children are derivations of the rule’s premises. The leaves of a
derivation tree are applications of axioms.

For example, to demonstrate that the judgment s(s(z)) ∈ Nat holds, we give the following the
derivation:

Zeroz ∈ Nat Successors(z) ∈ Nat
Successors(s(z)) ∈ Nat

We write the rule that is applied to the right of the horizontal line.

Note the same term derivation is also used in the context of a parsing derivation that witnesses
when a given string is a sentence in a given grammar (cf. Section 11.2.1). Observe that in
both cases, the term derivation refers to witnessing an instance of an inductive definition.

Given that the meta-language of judgment forms, inference rules, and judgments in mathe-
matical specification corresponds to function signatures, function bodies, and function calls in
code, the notion of derivations of a judgment corresponds to the execution of a function call.

We instrument isNat to show the correspondence between the derivation of the judgment
𝑛 ∈ Nat and an execution trace of isNat(n) of some test cases for n, specifically Z, S(Z), and
S(S(Z)).

def isNat(n: Nat): Boolean = {
val r = n match {

// Zero
case Z => {

val r = true
println("------------- Zero")
r

}
// Successor
case S(n) => {

val r = isNat(n)
println("------------- Successor")
r

152

}
}
println(s"$n � Nat")
r

}

defined function isNat

isNat(Z)

------------- Zero
Z � Nat

res3: Boolean = true

isNat(S(Z))

------------- Zero
Z � Nat
------------- Successor
S(Z) � Nat

res4: Boolean = true

isNat(S(S(Z)))

------------- Zero
Z � Nat
------------- Successor
S(Z) � Nat
------------- Successor
S(S(Z)) � Nat

res5: Boolean = true

153

15.3 Inductively-Defined

15.3.1 Example: Structural Equality

As another example, let us define when two natural numbers 𝑛1, 𝑛2 are structurally equal.
That is, we define the judgment form 𝑛1 =Nat 𝑛2 that we intend to mean, “Natural number
𝑛1 is structurally equal to natural number 𝑛2.” as the least relation closed under the inference
rules specified in Figure 15.2.

𝑛1 =Nat 𝑛2

ZeroEq

z =Nat z

SuccessorEq
𝑛1 =Nat 𝑛2

s(𝑛1) =Nat s(𝑛2)

Figure 15.2: Defining structural equality on natural numbers 𝑛. The judgment form 𝑛1 =Nat
𝑛2 says, “Natural number 𝑛1 is structurally equal to natural number 𝑛2.”

What it means to be the least relation is that we read the inference rules inductively. Intuitively,
this means that a judgment holds if and only if there is a derivation for it.

def eqNat(n1: Nat, n2: Nat): Boolean = {
val r = (n1, n2) match {

// ZeroEq
case (Z, Z) => {
println("----------------------- ZeroEq")
true

}
// SuccessorEq
case (S(n1), S(n2)) => {

val r = eqNat(n1, n2)
println("----------------------- SuccessorEq")
r

}
// No Rules
case _ => false

}
println(s"$n1 =Nat $n2")
r

}

defined function eqNat

154

We see using the instrumented function eqNat corresponding to the judgment form 𝑛1 =Nat 𝑛2
that we get complete derivations (i.e., end in applications of axioms) for the judgments z =Nat z
and s(z) =Nat s(z) that should hold:

eqNat(Z, Z)

----------------------- ZeroEq
Z =Nat Z

res7: Boolean = true

eqNat(S(Z), S(Z))

----------------------- ZeroEq
Z =Nat Z
----------------------- SuccessorEq
S(Z) =Nat S(Z)

res8: Boolean = true

And we cannot complete the derivation for the judgment s(s(z)) =Nat s(s(s(z))) that should
not hold:

eqNat(S(S(Z)), S(S(S(Z))))

Z =Nat S(Z)
----------------------- SuccessorEq
S(Z) =Nat S(S(Z))
----------------------- SuccessorEq
S(S(Z)) =Nat S(S(S(Z)))

res9: Boolean = false

15.4 Functions versus Relations

Mathematically, judgment forms are inductively-defined relations. Thus far, when we translate
them to functional programs, we have translated them into their characteristic functions (i.e.,
has return type Boolean). In some cases, the relations we define judgmentally are more
naturally read as functions. And as such, we want to translate them to functions in Scala.

155

15.4.1 Example: Semantics

Let us write 𝑖 as the meta-variable for a mathematical integer (i.e., ℤ). In particular, we do not
define syntax for 𝑖. We define an interpretation of syntactic natural numbers 𝑛 into integers 𝑖
with the judgment form 𝑛 ⇓ 𝑖, which we read as, “Natural number 𝑛 evaluates to integer 𝑖.”

𝑛 ⇓ 𝑖
EvalZero

z ⇓ 0

EvalSuccessor
𝑛 ⇓ 𝑖

s(𝑛) ⇓ 𝑖 + 1

Figure 15.3: Defining structural equality on natural numbers 𝑛. The judgment form 𝑛1 =Nat
𝑛2 says, “Natural number 𝑛1 is structurally equal to natural number 𝑛2.”

In defining a Scala implementation, let us choose the Scala type Int to represent 𝑖. Then, we
see the judgment form 𝑛 ⇓ 𝑖 defines an eval function with which we are already familiar:

def eval(n: Nat): Int = {
val i = n match {

case Z => {
println("------------ EvalZero")
0

}
case S(n) => {

val i = eval(n)
println("------------ EvalSuccessor")
i + 1

}
}
println(s"$n � $i")
i

}

defined function eval

eval(Z)

------------ EvalZero
Z � 0

res11: Int = 0

156

eval(S(Z))

------------ EvalZero
Z � 0
------------ EvalSuccessor
S(Z) � 1

res12: Int = 1

eval(S(S(Z)))

------------ EvalZero
Z � 0
------------ EvalSuccessor
S(Z) � 1
------------ EvalSuccessor
S(S(Z)) � 2

res13: Int = 2

We are able to translate the judgment form 𝑛 ⇓ 𝑖 into the eval function in Scala because we
can show that it indeed defines a function:

Proposition 15.2 (Deterministic Evaluation). If 𝑛 ⇓ 𝑖1 and 𝑛 ⇓ 𝑖2, then 𝑖1 = 𝑖2.

157

16 Lab: Basic Values, Variables, and
Judgments

Learning Goals

The primary learning goals of this assignment are to build intuition for the following:

• the distinction between concrete and abstract syntax;
• the relationship between judgment forms/inference rules/judgments and implementation

code;
• using a reference implementation as a definition of semantics;
• variable binding and variable environments.

Functional Programming Skills Recursion over abstract syntax. Representation invariants.
Programming Language Ideas Inductive definitions (grammars/productions/sentences and

judgment forms/inference rules/judgments). Semantics (via detective work).

Instructions

A version of project files for this lab resides in the public pppl-lab2 repository. Please follow
separate instructions to get a private clone of this repository for your work.

You will be replacing ??? or case _ => ??? in the Lab2.scala file with solutions to the
coding exercises described below.

Your lab will not be graded if it does not compile. You may check compilation with
your IDE, sbt compile, or with the “sbt compile” GitHub Action provided for you. Comment
out any code that does not compile or causes a failing assert. Put in ??? as needed to get
something that compiles without error.

You may add additional tests to the Lab2Spec.scala file. In the Lab2Spec.scala, there is
empty test class Lab2StudentSpec that you can use to separate your tests from the given tests
in the Lab2Spec class. You are also likely to edit Lab2.worksheet.sc for any scratch work.
You can also use Lab2.worksheet.js to write and experiment in a JavaScript file that you
can then parse into a JavaScripty AST (see Lab2.worksheet.sc).

If you like, you may use this notebook for experimentation. However, please make sure
your code is in Lab2.scala; this notebook will not graded.

158

https://github.com/csci3155/pppl-lab2

Recall that you need to switch kernels between running JavaScript and Scala cells.

16.1 Interpreter: JavaScripty Calculator

In this lab, we extend JavaScripty with additional value types and variable binding. That is,
the culmination of the lab is to implement an interpreter for the subset of JavaScript with
numbers, booleans, strings, the undefined value, and variable binding.

trait Expr // e ::=
case class N(n: Double) extends Expr // n

type Env = Map[String, Expr]
val empty: Env = Map.empty

defined trait Expr
defined class N
defined type Env
empty: Env = Map()

def eval(env: Env, e: Expr): Expr = ???

defined function eval

We leave the Expr inductive data type mostly undefined for the moment to focus on the type
of eval.

First, observe that the return type of eval is an Expr (versus Double in the previous lab), as
we now have more value types. However, eval should return an Expr that is a JavaScripty
value (i.e., is an 𝑒 : Expr such that isValue(𝑒) returns true). The need for the object-
language versus meta-language distinction is even more salient here than in the previous lab.
For example, it is critical to keep straight that N(1.0) is the Scala value representing the
JavaScripty value 1.0.

Second, observe that the eval function takes a JavaScripty value environment env: Env to
give meaning to free JavaScripty variables in e.

These ideas take unpacking, so let us start from the arithmetic sub-language of JavaScripty:

159

case class Unary(uop: Uop, e1: Expr) extends Expr // e ::= uop e1
case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr // | e1 bop e2

trait Uop // uop ::=
case object Neg extends Uop // -

trait Bop // bop ::=
case object Plus extends Bop // +
case object Minus extends Bop // | -
case object Times extends Bop // | *
case object Div extends Bop // | /

defined class Unary
defined class Binary
defined trait Uop
defined object Neg
defined trait Bop
defined object Plus
defined object Minus
defined object Times
defined object Div

Thus far, we have considered only one type of value in our JavaScripty object language: num-
bers 𝑛 (which we have considered double-precision floating-point numbers). Specifically, we
have stated the following:

expressions 𝑒 ∶∶= 𝑣
values 𝑣 ∶∶= 𝑛

Recall from our preliminary discussion about evaluation (Section 3.3) that the computational
model is a rewriting or reduction of expressions until reaching values. A value is simply an
expression that cannot be reduced any further. Thus, we can also consider a unary judgment
form 𝑒 value that judges when an expression is a value.

NumVal

𝑛 value

This judgment form corresponds to the isValue function:

160

def isValue(e: Expr): Boolean = e match {
case N(_) => true
case _ => false

}

defined function isValue

From our discussion on grammars and inference rules (Section 15.1), we can see this unary
judgment form 𝑒 value as defining a syntactic category values 𝑣. Thus, we freely write grammar
productions for 𝑣 to define the judgment form 𝑒 value.

Exercise 16.1. For this part of the lab, implement eval for the calculator language above
(which is the same language as in the previous lab) but now with type (Env, Expr) => Expr.

def eval(env: Env, e: Expr): Expr = ???

defined function eval

You will not use the env parameter yet. You will want to check that your implementation
returns JavaScripty values. For example,

16.2 Coercions: Basic Values

16.2.1 Booleans, Strings, and Undefined

Like most other languages, JavaScript has other basic value types. Let us extend JavaScripty
with Booleans, strings, and the undefined value:

values 𝑣 ∶∶= 𝑏 ∣ str ∣ undefined
booleans 𝑏

strings str

Boolean values 𝑏 are the literals true and false. String values str are string literals like "hi"
that we do not explicitly define here.

The undefined literal is a distinguished value that is different than all other values. It is like
the unit literal () in Scala.

161

case class B(b: Boolean) extends Expr // e ::= b
case class S(str: String) extends Expr // | str
case object Undefined extends Expr // | undefined

defined class B
defined class S
defined object Undefined

Examples

true
false
"Hello"
"Hola"
undefined

We update our isValue function appropriately:

def isValue(e: Expr): Boolean = e match {
case N(_) | B(_) | S(_) | Undefined => true
case _ => false

}

defined function isValue

A good exercise here is to reflect on what this code translates to in terms of additional inference
rules for the 𝑒 value judgment form.

16.2.2 Expressions

Each value type comes with some operations. Our abstract syntax tree has two constructors
for unary and binary expressions that are parametrized by unary uop and binary bop operators,
respectively:

expressions 𝑒 ∶∶= ∣ uop 𝑒1 ∣ 𝑒1 bop 𝑒2

162

16.2.2.1 Numbers

For example, numbers has

unary operators uop ∶∶= -
binary operators bop ∶∶= + ∣ - ∣ * ∣ /

that we considered previously.

16.2.2.2 Booleans

For booleans, we add unary negation ! and binary conjunction && and disjunction ||.

unary operators uop ∶∶= !
binary operators bop ∶∶= && ∣ ||

case object Not extends Uop // uop ::= !
case object And extends Bop // bop ::= &&
case object Or extends Bop // | ||

defined object Not
defined object And
defined object Or

Examples

!true
true && false
true || false

We also expect to be able to elimate booleans with a conditional if-then-else expression:

expressions 𝑒 ∶∶= 𝑒1 ? 𝑒2 : 𝑒3

case class If(e1: Expr, e2: Expr, e3: Expr) extends Expr // e ::= e1 ? e2 : e3

defined class If

163

We also expect to be able to compare values for equality and disquality and numbers for
inequality:

binary operators bop ∶∶= === ∣ !== ∣ < ∣ <= ∣ > ∣ >=

case object Eq extends Bop // bop ::= ===
case object Ne extends Bop // | !==
case object Lt extends Bop // | <
case object Le extends Bop // | <=
case object Gt extends Bop // | >
case object Ge extends Bop // | >=

defined object Eq
defined object Ne
defined object Lt
defined object Le
defined object Gt
defined object Ge

16.2.2.3 Strings

The string operations we support in JavaScripty are string concatenation and string compar-
ison. In JavaScript, string concatenation is written with the binary operator + and string
comparison using <, <=, >, and >=, so we do not need to extend the syntax.

Examples

"Hello" + ", " + "World" + "!"

16.2.2.4 Undefined

As undefined corresponds to unit () in Scala and is uninteresting in itself, we add a side-
effecting expression that prints to console.

expressions 𝑒 ∶∶= console.log(𝑒1)

case class Print(e1: Expr) extends Expr // e ::= console.log(e1)

defined class Print

164

Examples

console.log("Hello, World!")

If we now have side-effecting expressions, then we would expect to have a way to sequence
executing expressions for their effects.

binary operators bop ∶∶= ,

case object Seq extends Bop // bop ::= ,

defined object Seq

Examples

undefined, 3

16.2.3 Semantics Detective: JavaScript is Bananas

In the above, we have carefully specified the abstract syntax of the object language of interest
and informally discussed its semantics. But if we are to implement an interpreter in the eval
function, we also need to define its semantics! And we give a precise definition as follows:

Important

In this lab, the semantics of a JavaScripty expression 𝑒 is defined by the evaluation of it
as a JavaScript program.

Given the careful specification of the abstract syntax, a natural question to ask is whether all
abstract syntax trees of type Expr in the above are valid expressions and have a semantics in
JavaScript (and hence JavaScripty). Is 3 + true a valid expression?

//| filename: JavaScript
3 + true

We try it out and see that yes it is. One aspect that makes the JavaScript specification
interesting is the presence of implicit coercions (e.g., non-numeric values, such as booleans or
strings, may be implicitly converted to numeric values depending on the context in which they
are used).

165

You might guess that defining coercions between value types can lead to some interesting
semantics. It is because of these coercions that we have the meme that “JavaScript is ba-
nanas.”

//| filename: JavaScript
"b" + "a" + "n" + - "a" + "a" + "s"

Armed with knowledge that in JavaScript, numbers are floating-point numbers, the + operator
in JavaScript is overloaded for strings and numbers, and coercions happen between value types,
see if you can explain what is happening in the “bananas” expression above.

16.2.3.1 Coercions

Our eval function interpreter will need to make use of three helper functions for converting
values to numbers, booleans, and strings:

def toNumber(v: Expr): Double = ???
def toBoolean(v: Expr): Boolean = ???
def toStr(v: Expr): String = ???

defined function toNumber
defined function toBoolean
defined function toStr

Exercise 16.2. Write at least 1 JavaScript expression that shows a coercion from a non-
numeric value to a number and see what the result should be:

//| filename: JavaScript
// YOUR CODE HERE
undefined

Then, translate this JavaScript expression (written in concrete syntax) into an Expr value (i.e.,
a JavaScripty abstract syntax tree).

Finally, use this Expr as a unit test for toNumber in the Lab2StudentSpec class in the
Lab2Spec.scala file.

Exercise 16.3. Do the same to create a toBoolean test. Write at least 1 JavaScript expression
that shows a coercion from a non-boolean value to a boolean, see what the result should be,
translate it to an Expr value, and add it as test in Lab2StudentSpec.

166

Listing 16.1 Lab2Spec.scala

val e_toNumber_test1 = ???
"toNumber" should s"${e_toNumber_test1}" in {
assertResult(???) { toNumber(e_toNumber_test1) }

}

//| filename: JavaScript
// YOUR CODE HERE
undefined

Exercise 16.4. Do the same to create a toStr test. Write at least 1 JavaScript expression that
shows a coercion from a non-string value to a string, see what the result should be, translate
it to an Expr value, and add it as test in Lab2StudentSpec.

//| filename: JavaScript
// YOUR CODE HERE
undefined

Exercise 16.5. Implement toNumber, toBoolean, and toStr in Lab2.scala (using test-driven
development with the test cases you have written above).

Exercise 16.6. For this part of the lab, extend your eval from Exercise 16.1 for booleans,
strings, the undefined value, and printing.

def eval(env: Env, e: Expr): Expr = ???

defined function eval

You still will not use the env parameter yet. You again will want to check that your imple-
mentation returns JavaScripty values using the latest isValue. For example,

16.3 Interpreter: JavaScripty Variables

The final piece of this lab is to extend our interpreter with variable uses and binding (cf.
Chapter 14).

expressions 𝑒 ∶∶= 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2

167

case class Var(x: String) extends Expr // e ::= x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // | const x = e1; e2

defined class Var
defined class ConstDecl

Note that the above is the abstract syntax we consider for ConstDecl, which is more flexible
the concrete syntax for const allowed by JavaScript (cf. Section 14.11)

In this lab, we define a value environment as a map from variable names to JavaScripty values,
which we represent in Scala as a value of type Map[String, Expr]. Note that representing
variable names as Scala Strings here, and it is a representation invariant that the Exprs must
correspond to JavaScripty values.

type Env = Map[String, Expr]
val empty: Env = Map.empty

def lookup(env: Env, x: String): Expr = env(x)
def extend(env: Env, x: String, v: Expr): Env = {
require(isValue(v))
env + (x -> v)

}

defined type Env
empty: Env = Map()
defined function lookup
defined function extend

We provide the above value and function bindings to interface with the Scala standard library
for Map[String, Expr] and maintain this representation invariant. You may use the Scala
standard library directly if you wish, but we recommend that you just use these interfaces, as
they are all that you need and give you the safety of enforcing the representation invariant.
The empty value represents an empty value environment, the lookup function gets the value
bound to the variable named by a given string, and the extend function extends a given
environment with a new variable binding.

Exercise 16.7. For this part of the lab, extend your eval from Exercise 16.1 for variable uses
(i.e., Var) and variable binding (i.e., ConstDecl). We suggest you start by adding tests with
variables uses and const bindings to be able do test-driven development (see below).

168

def eval(env: Env, e: Expr): Expr = ???

defined function eval

Testing

In this lab, we have carefully defined the syntax of the JavaScripty variant of interest, and we
have defined its semantics to be defined to be the same as JavaScript. Thus, you can write any
JavaScript program within the syntax defined above to create test cases for your eval function.
Any of the above JavaScript examples could be used as test cases. In some cases, you may
want to write abstract syntax trees directly in Scala (i.e., values of type Expr). In other cases,
you can use the provided JavaScripty parser to translate concrete syntax (i.e., values of type
String) into abstract syntax (i.e., values of type Expr).

Exercise 16.8 (Optional). We give some exercises below to explore this subset of JavaScripty
that you can then use as test cases that you add to your Lab2StudentSpec.

16.3.0.1 Basic Arithmetic Operations

This program defines two constants, x and y, and calculates their sum. It then logs the result
sum to the console.

const x = 10;
const y = 5;
const sum =
// YOUR CODE HERE (replace undefined)
undefined

;
console.log(sum);

console.assert(sum === 15)

16.3.0.2 Conditional Expressions

169

const a = 10;
const b = 20;
const max =
// YOUR CODE HERE (replace undefined)
undefined

;

console.assert(max === 20)

16.3.0.3 Unary and Binary Operations

This program checks if a number is positive using a unary negation - and a binary relational
operator.

const num = -5;
const isPositive =
// YOUR CODE HERE (replace undefined)
undefined

;

console.assert(isPositive === false)

16.3.0.4 Undefined

This program demonstrates the correspondence between undefined in JavaScript and ().

const r = console.log("Hello");

console.assert(r === undefined)

Submission

If you are a University of Colorado Boulder student, we use Gradescope for assignment sub-
mission. In summary,

□ Create a private GitHub repository by clicking on a GitHub Classroom link from the
corresponding Canvas assignment entry.

□ Clone your private GitHub repository to your development environment (using the <>
Code button on GitHub to get the repository URL).

170

□ Work on this lab from your cloned repository. Use Git to save versions on GitHub (e.g.,
git add, git commit, git push on the command line or via VSCode).

□ Submit to the corresponding Gradescope assignment entry for grading by choosing
GitHub as the submission method.

You need to have a GitHub identity and must have your full name in your GitHub profile in
case we need to associate you with your submissions.

171

17 Review: Syntax

Instructions

This assignment is a review exercise in preparation for a subsequent assessment activity.

This is a peer-quizzing activity with two students. Each section has an even number of exercises.
Student A quizzes Student B on the odd numbered exercises, and Student B quizzes Student
A on the even numbered exercises.

To the best of your ability, give feedback using the learning-levels rubric below on where your
peer is in reaching or exceeding Proficient (P) on each question live. Guidance of what a
Proficient (P) answer looks like are given.

There may or may not be a member of the course staff assigned to your slot. It is expected that
regardless of whether a member of the course staff is present, this is a peer-quizzing activity. If
a member of the course staff is present, you may ask for their help and guidance on answering
the questions and/or their assessment of where you are at in your learning level.

It is not expected that you can complete all exercises in the allotted time. You and your partner
may pick and choose which sections you want to focus on and use the remaining questions
as a study guide. You and your partner may, of course, continue working together after the
scheduled session.

At the same time, most questions can be answered in a few minutes with a Proficient (P) level
of understanding. Aim for 3–4 sections in 30 minutes.

Your submission for this session is an overall assessment of where your partner is in their
reaching-or-exceeding-proficiency level. Be constructive and honest. Neither your nor your
partners grade will depend on your learning-level assessment. Instead, your score for
this assignment will be based on the thoughtfulness of your feedback to your partner.

Submit on Gradescope as a pair. That is, use Gradescope’s group assignment feature to submit
as a group. The submission form has a spot for each of you to provide your assessment and
feedback for each other.

Please proactively fill slots with an existing sign-up to have a partner. In case your peer does
not show up to the slot, try to join another slot happening at the same time from the course
calendar. If that fails and a course staff member is present, you may do the exercise with the
staff member and get credit. If there is no staff member present, you may try to find a slot at

172

a later time if you like or else write to the Course Manager on Piazza timestamped during the
slot.

Learning-Levels Rubric

4 - Exceeding (E) Student demonstrates synthesis of the underlying concepts. Student can
go beyond merely describing the solution to explaining the underlying reasoning and
discussing generalizations.

3 - Proficient (P) Student is able to explain the overall solution and can answer specific
questions. While the student is capable of explaining their solution, they may not be
able to confidently extend their explanation beyond the immediate context.

2 - Approaching (A) Student may able to describe the solution but has difficulty answering
specific questions about it. Student has difficulty explaining the reasoning behind their
solution.

1 - Novice (N) Student has trouble describing their solution or responding to guidance. Stu-
dent is unable to offer much explanation of their solution.

17.1 Abstract Syntax Trees

Exercise 17.1. Consider the following buggy implementation of nnf that attempts to convert
a boolean expression represented as a BExpr into negation normal form (Exercise 13.2). What’s
correct and what’s buggy about this implementation?

sealed trait BExpr
case class Var(x: String) extends BExpr
case class Not(e: BExpr) extends BExpr
case class And(e1: BExpr, e2: BExpr) extends BExpr
case class Or(e1: BExpr, e2: BExpr) extends BExpr

def nnf(e: BExpr): BExpr = e match {
case Not(Not(e1)) => e1 // Remove double negation
case Not(And(e1, e2)) => Or(Not(e1), Not(e2)) // De Morgan's Law for conjunction
case Not(Or(e1, e2)) => And(Not(e1), Not(e2)) // De Morgan's Law for disjunction
case _ => e

}

defined trait BExpr
defined class Var
defined class Not
defined class And

173

defined class Or
defined function nnf

A Proficient (P) answer recognizes that the pattern matching implementing the
rules to convert to negation normal form is correct, but the following are missing:
base cases, pass-through recursive cases for And and Or, and the recursive calls
to normalize the appropriate sub-expressions in the Not cases. A Proficient (P)
answer should be able articulate which test cases will work and which will not.

Exercise 17.2. Fix this buggy implementation of nnf and argue that it correctly converts
any BExpr into negation normal form. It is sufficient to do this by writing on a sheet of paper
or a whiteboard.

A Proficient (P) answer will be able add the missing base cases, the cases for And
and Or, and fix the Not cases. The correctness argument should state something
about normalizing recursively or by induction.

An Exceeding (E) answer should recognize that the induction hypothesis needs to
be general enough for both expressions 𝑒 and their negation Not(𝑒).

17.2 Ambiguity Detective

Exercise 17.3. Consider a programming language with some binary infix-operator expressions.
When is it possible to test the relative precedence of those operators by evaluating example
expressions? How would you do it? Can you give an example? Explain.

A Proficient (P) answer should recognize this is what was asked in the Precedence
Detective exercise (Exercise 13.4) with << and -. It should state that if running
different versions of an expression using << and - corresponding to different prece-
dence orders yields different values, then it is possible to test relative precedence.

Exercise 17.4. How about for associativity? Can you give a positive example an operator
that you can test its parsing-associativity by evaluating expressions and a negative example
where you cannot in Scala?

A Proficient (P) answer should recognize that different versions of an expression
corresponding to different associativities may yield the same answer. In this case,
one cannot test. In math, an operation is called an associative operation where
parsing expressions with the operator as left or right associative does not change
its semantics. Note the difference in using two uses of “associative” in the last
sentence. A standard example for an associative operation (in math) is +, while
− is not.

174

17.3 Grammars

Exercise 17.5. Consider the following grammar:

S ∶∶= A B B A
A ∶∶= a ∣ a A
B ∶∶= b B c ∣ B B ∣ 𝜀

1. Describe the sentences of the language defined by this grammar.
2. Give two positive example sentences in the language described by this grammar and two

negative example strings not in the language described by this grammar.
3. For each positive example sentence, give a leftmost derivation and a parse tree.
4. For each negative example string, argue why they are not by described the grammar

(e.g., show getting stuck trying to construct parse trees).

A Proficient (P) answer sees that A describes the language of one-or-more a’s and
B as the language of matching b’s and c’s. Thus, S must have one-or-more a’s
followed by matching b’s and c’s followed by one-or-more a’s. A Proficient (A)
answer will be able to give derivations, parse trees, etc. for 2–4.

Exercise 17.6. Consider the following two grammars for expressions e:

e ∶∶= operand ∣ e operator operand (17.1)

e ∶∶= operand esuffix
esuffix ∶∶= operator operand esuffix ∣ 𝜀 (17.2)

In both grammars, operator and operand are the same; you do not need to know their produc-
tions for this question.

1. Describe the expressions generated by the two grammars.
2. Do these grammars generate the same or different expressions? Explain.

Hint: Think about both the concrete syntax (sentences or strings) and the abstract syntax
(terms or trees).

A Proficient (P) answer will recognize that in both grammars, the language de-
scribed by e is one-or-more operand’s separated by operators. It should state they
describe the same language, that is, they are the same in terms of strings and con-
crete syntax. They are both refactorings of a common binary operator grammar.

A Proficient (P) answer will recognize that neither grammar is ambiguous and in
terms of parsing, produce different parse trees. The first grammar has left recursion
in e, while the second grammar has right recursion in esuffix.

175

17.4 Concrete Syntax, Abstract Syntax, and Semantics

Consider the following grammar:

A ∶∶= B ∣ ⊗A ⊘ A ∣ A ⊕ B
B ∶∶= a ∣ b

Exercise 17.7. Is the above grammar ambiguous? If so, prove that it is ambiguous. If not,
argue informally why it isn’t.

A Proficient (P) answer will recognize that the grammar is ambiguous involving
the second and third productions. An example sentence that shows the ambiguity
is ⊗a ⊘ a ⊕ a. It will state a sentence like this one and give two different (valid)
parse trees for it.

Exercise 17.8. Let us ascribe a semantics to the syntactic objects A specified in the above
grammar. In particular, let us write

A ⇓ 𝑛
for the judgment form that should mean A has a total number 𝑛 of a symbols where 𝑛 is the
meta-variable for numbers. Define this judgment form via a set of inference rules. You may
rely upon arithmetic operators over numbers.

Hint: There should be one inference rule for each production of the non-terminal 𝐴 (called a
syntax-directed judgment form).

A Proficient (P) answer will define this judgment using three inference rules—one
for each production of A. It is also a good answer to define a judgment form B ⇓ 𝑛
with one inference rule.

A Exceeding (E) answer will realize that one could give these two possible answers.

17.5 Interpreter Implementation

Exercise 17.9. Some binary operators bop are overloaded for numbers and strings in
JavaScript(y), that is, they apply a different number or string operation depending on the
type of the operands.

1. To implement your eval function, how did you discover which ones? Which ones did
you discover are overloaded?

2. Give an example JavaScript(y) expression that performs a string operation after coercing
a number to a string.

176

3. On paper or a whiteboard, trace through your eval implementation using your test case
from 2. It is fine if you discover a bug in your eval implementation doing this exercise.

Use this following notation to show the key steps in running your Scala implementation:

eval(env , 𝑒) = 𝑣

• if eval(env1 , 𝑒1) = 𝑣1

– if eval(env′
1 , 𝑒′

1) = 𝑣′
1

– …
• if eval(env2 , 𝑒2) = 𝑣2

– …
• …

where each “node” in the tree above is a recursive call to eval. You may write env, 𝑒, 𝑣 as
Scala values (i.e., the Scala representation of JavaScripty) or JavaScripty concrete syntax as
you prefer.

A Proficient (P) answer will say that number addition and string concatenation
use the same operator + and that number comparison and lexicographic-string
comparison is also overloaded with <, <=, >, and >=. The answer should include
that they wrote and ran JavaScript expressions that should performing number
addition versus string concatenation (and similarly for comparisons) to discover
that + is considered string concatenation if either argument is a string, while <, <=,
>, and >= are considered lexicographic-string comparison only if both arguments
are strings. It should then use + to give a test case that coerces a number to a
string.

A Proficient (P) answer for the tracing should have the right number of eval calls
on sub-expressions to reach the bases cases with the appropriate indentions showing
recursive calls.

Exercise 17.10. Trace through your eval implementation for the JavaScripty test case

const abc = 1 + 2; abc

or equivalently, for

eval(Map(), ConstDecl("abc", Binary(Plus, N(1), N(2)), Var("abc")))

using the notation given above.

A Proficient (P) answer will have exactly 5 calls to eval.

177

As noted above, it is fine to answer with concrete JavaScripty syntax in place of
the Scala abstract syntax tree representation as long as it is understood that this
is just for ease of writing it on the board and is not what “Scala sees”. It is a below
Proficient (P) indicator if there’s confusion about what is concrete syntax for the
board and what are abstract syntax trees.

178

Part IV

Language Design and Implementation

179

18 Operational Semantics

In the previous part, we began the discussion of language specification and the importance
specifying languages clearly, crisply, and precisely. Grammars is the main tool by which the
syntax of a language, that is, the programs that we can write are specified. In this section, we
introduce a tool for defining the semantics of a language, that is, the meaning of programs.

There are several ways to think about the meaning of programs. One natural way is to think
about how programs evaluate. An operational semantics is a way to describe how programs
evaluate in terms of the language itself (rather than by compilation to a machine model).
One way to see an operational semantics is as describing an interpreter for the language of
interest.

18.1 Big-Step Operational Semantics

18.1.1 JavaScript is Bananas

We might guess the semantics of particular expressions based on common conventions. For
example, we might guess that expression

𝑒1 + 𝑒2

adds two numbers that result from evaluating 𝑒1 and 𝑒2. But note that this statement is
something about the semantics of 𝑒1 + 𝑒2, which has yet to be specified.

As we have seen in the previous lab (Section 16.2.3), one aspect that makes the JavaScript
specification “interesting” is the presence of implicit conversions (e.g., boolean values may be
implicitly converted to numeric values depending on the context in which values are used).
For example,

//| filename: JavaScript
true + 2

evaluates to 3.

Then, the + operator in JavaScript is overloaded for strings and numbers with + on strings
meaning string concatenation:

180

//| filename: JavaScript
"Hello, " + "World!"

So 𝑒1 + 𝑒2 may not be just adding two numbers!

You might guess that defining coercions between value types can lead to some interesting
semantics. It is because of these coercions that we have the meme that “JavaScript is ba-
nanas.”

//| filename: JavaScript
"b" + "a" + "n" + - "a" + "a" + "s"

How can we describe how to implement a interpreter for all programs?

18.1.2 An Evaluation Judgment

It is possible to specify the semantics of a programming language using natural language
prose. However, just like with specifying syntax using natural language prose, it is very easy
to leave ambiguity in the description. Furthermore, trying to minimize ambiguity can create
very verbose descriptions. The JavaScript specification, specifically ECMA-262 standard, is
actually rather precise specification based on natural language prose, but the descriptions are
quite verbose.

In this section, we introduce some mathematical notation that enables us to specify semantics
with less ambiguity in a very compact form. Like any mathematical notation, its precise and
compact nature makes it easier, for example, to spot errors or inconsistencies in specification.
However, there will necessarily be a learning curve to reading the notation.

We want to write out as unambiguously as possible how a program should evaluate independent
of an implementation (e.g., a compiler and machine architecture). We use a methodology for
semantics specification known as an operational semantics. An operational semantics can
be thought as describing an interpreter for the language of interest with relations between
syntactic objects.

We have already used a notation for describing an evaluation relation:

𝑒 ⇓ 𝑣

This notation is a judgment form stating informally, “Expression 𝑒 evaluates to value 𝑣.” Defin-
ing this judgment describes how to evaluate expressions to values and thus corresponds closely
to writing a recursive interpreter of the abstract syntax trees representing expressions. A set
of inference rules defining such an evaluation judgment form is called a big-step operational
semantics for expressions 𝑒 because it describes evaluation from expressions in one “big step”
to values. Another term for a big-step operational semantics is a natural semantics.

181

18.2 One Type of Values

Let us first consider an object language with only one type of values—numbers. In particular,
we consider just numbers 𝑛 and one arithmetic operator +:

expressions 𝑒 ∶∶= 𝑣 ∣ 𝑒1 bop 𝑒2
values 𝑣 ∶∶= 𝑛

binary operators bop ∶∶= +
numbers 𝑛

trait Expr // e
trait Bop // bop

case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr // e ::= e1 bop e2

case class N(n: Double) extends Expr // e ::= n
case object Plus extends Bop // bop ::= +

def isValue(e: Expr): Boolean = e match {
case N(_) => true
case _ => false

}

val e_oneplustwo = Binary(Plus, N(1), N(2))

defined trait Expr
defined trait Bop
defined class Binary
defined class N
defined object Plus
defined function isValue
e_oneplustwo: Binary = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0))

Back to the original example in this section, we are trying to specify how the expression 𝑒1 +𝑒2
evaluates. Thinking operationally, we want to say something like: evaluate 𝑒1 to a number,
evaluate 𝑒2 to a number, and then return the number that is the addition of those numbers.

Consider the following rules defining the 𝑒 ⇓ 𝑣 judgment form:

EvalNum

𝑛 ⇓ 𝑛

EvalPlus
𝑒1 ⇓ 𝑛1 𝑒2 ⇓ 𝑛2 𝑛 = 𝑛1 + 𝑛2

𝑒1 + 𝑒2 ⇓ 𝑛

182

The EvalNum rule is an axiom that states that an expression 𝑛 evaluates to itself (as it is
already a value).

The EvalPlus rule specifies how the expression 𝑒1 + 𝑒2 evaluates following our intuition above.
Reading top-down, this rule says if we know that expression 𝑒1 evaluates to a number 𝑛1 and
𝑒2 evaluates to 𝑛2, then expression 𝑒1 + 𝑒2 evaluates to 𝑛 where 𝑛 is the addition of the 𝑛1 and
𝑛2.

Any evaluation rule can also be read bottom-up, which matches more closely to an implemen-
tation. For example, the above EvalPlus rule says, “To evaluate 𝑒1 + 𝑒2, evaluate 𝑒1 to get
a number 𝑛1, evaluate 𝑒2 to get a number 𝑛2, and return the addition of those two numbers
𝑛 = 𝑛1 + 𝑛2.”

Note that the + in the premise is “plus” in the meta language (i.e., the implementation
language) in contrast to the + in the conclusion that is the syntactic symbol in the object
language (i.e., the source language). Here, we have distinguished the meta-language “plus” for
clarity, but often, the reader is asked to determine this distinction based on context. To be
completely explicit, let us use an alternative notation for the abstract syntax:

EvalPlus
𝑒1 ⇓ N(𝑛1) 𝑒1 ⇓ N(𝑛2) 𝑛 = 𝑛1 + 𝑛2

Binary(Plus, 𝑒1, 𝑒2) ⇓ N(𝑛)

We see that these inference rules could translate to following eval implementation:

def eval(e: Expr): Expr = e match {
// EvalNum
case n @ N(_) => n
// EvalPlus
case Binary(Plus, e1, e2) => {

val N(n1) = eval(e1)
val N(n2) = eval(e2)
val n = n1 + n2
N(n)

}
}

e_oneplustwo
val v_oneplustwo = eval(e_oneplustwo)
assert(v_oneplustwo == N(3))

defined function eval

183

res1_1: Binary = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0))
v_oneplustwo: Expr = N(n = 3.0)

As there could be slightly different code implementations that behave the same, the same is
true for inference rules. For example, the following version of EvalPlus says the same thing
without making an explicit “binding” of 𝑛:

EvalPlus
𝑒1 ⇓ 𝑛1 𝑒2 ⇓ 𝑛2
𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

While we want a set of inference rules to define a semantics unambiguously, there are imple-
mentation choices. For example, defining eval as follows:

def eval(e: Expr): Double = e match {
// EvalNum
case N(n) => n
// EvalPlus
case Binary(Plus, e1, e2) => eval(e1) + eval(e2)

}

e_oneplustwo
val v_oneplustwo = eval(e_oneplustwo)
assert(v_oneplustwo == 3)

defined function eval
res2_1: Binary = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0))
v_oneplustwo: Double = 3.0

is also described by these inference rules.

We can imagine that we also add inference rules for other arithmetic operators in a similar
manner (cf. Figure 18.2).

18.3 Dynamic Typing

Let us add boolean values to our JavaScripty variant:

values 𝑣 ∶∶= 𝑏
booleans 𝑏

184

case class B(b: Boolean) extends Expr // e ::= b

def isValue(e: Expr): Boolean = e match {
case N(_) | B(_) => true
case _ => false

}

val e_true = B(true)
val e_trueplustwo = Binary(Plus, e_true, N(2))

defined class B
defined function isValue
e_true: B = B(b = true)
e_trueplustwo: Binary = Binary(bop = Plus, e1 = B(b = true), e2 = N(n = 2.0))

For the moment, we only add boolean literals and consider the following set of inference rules
defining evaluation:

EvalNum

𝑛 ⇓ 𝑛

EvalBool

𝑏 ⇓ 𝑏

EvalPlus
𝑒1 ⇓ 𝑛1 𝑒2 ⇓ 𝑛2
𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

def eval(e: Expr): Expr = e match {
// EvalNum
case n @ N(_) => n
// EvalBool
case b @ B(_) => b
// EvalPlus
case Binary(Plus, e1, e2) => {

val N(n1) = eval(e1)
val N(n2) = eval(e2)
N(n1 + n2)

}
}

e_oneplustwo
val v_oneplustwo = eval(e_oneplustwo)
assert(v_oneplustwo == N(3))

e_true

185

val v_true = eval(e_true)
assert(v_true == B(true))

defined function eval
res4_1: Binary = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0))
v_oneplustwo: Expr = N(n = 3.0)
res4_4: B = B(b = true)
v_true: Expr = B(b = true)

An alternative would be to have just one rule for values:

EvalVal

𝑣 ⇓ 𝑣

EvalPlus
𝑒1 ⇓ 𝑛1 𝑒2 ⇓ 𝑛2
𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

where have rewritten EvalNum and EvalBool to EvalVal here to apply to all values 𝑣,
including both numbers and booleans. We can reimplement eval to match these rules:

def eval(e: Expr): Expr = e match {
// EvalVal
case v if isValue(v) => v
// EvalPlus
case Binary(Plus, e1, e2) => {

val N(n1) = eval(e1)
val N(n2) = eval(e2)
N(n1 + n2)

}
}

e_oneplustwo
val v_oneplustwo = eval(e_oneplustwo)
assert(v_oneplustwo == N(3))

e_true
val v_true = eval(e_true)
assert(v_true == B(true))

defined function eval
res5_1: Binary = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0))
v_oneplustwo: Expr = N(n = 3.0)

186

res5_4: B = B(b = true)
v_true: Expr = B(b = true)

Recall that a judgment form (e.g., 𝑒 ⇓ 𝑣) is an inductively-defined relation. A particular
judgment holds, for example,

1 + 2 ⇓ 3
when we can find a derivation for it (cf. Section 15.2).

It is essentially undefined behavior when a judgment does not hold. For example, with these
rules, there is no derivation for the judgment

true + 2 ⇓ 𝑣

for any value 𝑣. In code, this might manifest as an exception:

e_trueplustwo
val v_trueplustwo = eval(e_trueplustwo)

We see that the particular issue is that + can only apply to numbers in the EvalPlus rule:
specifically, 𝑛1 + 𝑛2. When the operator does not apply to input values, this is called a type
error. If we detect type error at run time, then this is called dynamic typing.

In particular, we do not fail haphazardly. Instead, we want to identify specifically the expres-
sion that has the type error:

case class DynamicTypeError(e: Expr) extends Exception {
override def toString: String = s"TypeError: in expression $e"

}

def eval(e: Expr): Expr = e match {
// EvalVal
case v if isValue(v) => v
case Binary(Plus, e1, e2) => {

(eval(e1), eval(e2)) match {
// EvalPlus
case (N(n1), N(n2)) => N(n1 + n2)
// Otherwise, we have a type error.
case _ => throw DynamicTypeError(e)

}
}

}

187

defined class DynamicTypeError
defined function eval

We introduce the exception type DynamicTypeError so that we can report the specific expres-
sion that has the type error.

e_trueplustwo
val v_trueplustwo = eval(e_trueplustwo)

18.4 Coercions

The EvalPlus rules above define semantics that does not match JavaScript because they
require 𝑒1 and 𝑒2 in 𝑒1 + 𝑒2 to evaluate to number values (i.e., 𝑛1 and 𝑛2). JavaScript permits
other types of values and then performs a conversion before performing the addition.

Suppose we want to extend the definition of the evaluation judgment form so that there is a
derivation of the judgment

true + 2 ⇓ 𝑣
for some value 𝑣. That is, we want to define type coercions so that we can apply 𝑛1 + 𝑛2 in
EvalPlus.

Let us introduce a new judgment form for type coercions:

𝑣 ⇝ 𝑛

to say, “Value 𝑣 coerces to number 𝑛.” In the case that values are numbers or booleans (i.e.,
𝑣 ∶∶= 𝑛 ∣ 𝑏), we define this judgment form for coercions as follows:

𝑣 ⇝ 𝑛
ToNumberNum

𝑛 ⇝ 𝑛
ToNumberTrue

true ⇝ 1
ToNumberFalse

false ⇝ 0

that we implement with the toNumber function:

def toNumber(e: Expr): Double = {
require(isValue(e))
e match {

// ToNumberNum
case N(n) => n
// ToNumberTrue
case B(true) => 1

188

// ToNumberFalse
case B(false) => 0

}
}

defined function toNumber

EvalVal

𝑣 ⇓ 𝑣

EvalPlus
𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2

𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

def eval(e: Expr): Expr = e match {
// EvalVal
case v if isValue(v) => v
// EvalPlus
case Binary(Plus, e1, e2) => {

val v1 = eval(e1)
val v2 = eval(e2)
N(toNumber(v1) + toNumber(v2))

}
}

e_trueplustwo
val v_trueplustwo = eval(e_trueplustwo)

defined function eval
res10_1: Binary = Binary(bop = Plus, e1 = B(b = true), e2 = N(n = 2.0))
v_trueplustwo: Expr = N(n = 3.0)

We can imagine that we also add inference rules for other arithmetic and boolean operators
in a similar manner, though we also need a judgment form for coercing into booleans 𝑣 ⇝ 𝑏
(cf. Figure 18.2).

18.5 Variables

Let us consider extending the above language with variable uses and binding (as before in
Chapter 14):

189

expressions 𝑒 ∶∶= 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2
variables 𝑥, 𝑦

case class Var(x: String) extends Expr // e ::= x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // e ::= const x = e1; e2

val e_const_i_two_trueplusi = ConstDecl("i", N(2), Binary(Plus, B(true), Var("i")))

defined class Var
defined class ConstDecl
e_const_i_two_trueplusi: ConstDecl = ConstDecl(
x = "i",
e1 = N(n = 2.0),
e2 = Binary(bop = Plus, e1 = B(b = true), e2 = Var(x = "i"))

)

Because of variables, we need a slightly richer judgment form with an additional parameter:

𝐸 ⊢ 𝑒 ⇓ 𝑣

which says informally, “In value environment 𝐸, expression 𝑒 evaluates to value 𝑣.” This rela-
tion has three parameters: 𝐸, 𝑒, and 𝑣. The other parts of the judgment is simply punctuation
that separates the parameters. The ⊢ symbol is called the “turnstile” symbol.

First, we need to “refactor” the EvalVal and EvalPlus rules to account for the additional
value environment parameter:

EvalVal

𝐸 ⊢ 𝑣 ⇓ 𝑣

EvalPlus
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2

𝐸 ⊢ 𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

Reading the rules bottom-up, observe that we are simply passing the value environment 𝐸
into recursive calls of 𝐸 ⊢ 𝑒 ⇓ 𝑣.

A value environment 𝐸 is a finite map from variables 𝑥 to values 𝑣 and can be described by
the following grammar:

value environments 𝐸, env ∶∶= ⋅ ∣ 𝐸[𝑥 ↦ 𝑣]

We write ⋅ for the empty environment and 𝐸[𝑥 ↦ 𝑣] as the environment that maps 𝑥 to 𝑣
but is otherwise the same as 𝐸 (i.e., extends 𝐸 with mapping 𝑥 to 𝑣). Additionally, we write

190

𝐸(𝑥) for looking up the value of 𝑥 in environment 𝐸. More precisely, we can define look up
as follows by induction on the structure of 𝐸:

𝐸[𝑦 ↦ 𝑣](𝑥) def= 𝑣 if 𝑦 = 𝑥
𝐸[𝑦 ↦ 𝑣](𝑥) def= 𝐸(𝑥) otherwise

⋅(𝑥) undefined

While we give a syntax for value environments in the above to define them mathematically,
we may choose to implement them in other ways. For example, we choose to represent value
environments Env using the Map[String, Expr] data type from Scala standard library with
lookup and extend functions:

type Env = Map[String, Expr]

val empty: Env = Map.empty

def lookup(env: Env, x: String): Expr = env(x)

def extend(env: Env, x: String, v: Expr): Env = {
require(isValue(v))
env + (x -> v)

}

defined type Env
empty: Env = Map()
defined function lookup
defined function extend

Let us consider inference rules that define evaluating variable uses and variable binding:

EvalVar

𝐸 ⊢ 𝑥 ⇓ 𝐸(𝑥)

EvalConstDecl
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸[𝑥 ↦ 𝑣1] ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ const 𝑥 = 𝑒1; 𝑒2 ⇓ 𝑣2

The EvalVar rule says that a variable use 𝑥 evaluates to the value to which it is bound in the
environment 𝐸. Or operationally, to evaluate a variable use 𝑥, look up the value corresponding
to 𝑥 in the environment 𝐸.

The EvalConstDecl rule is particularly interesting because we see explicitly that

const 𝑥 = 𝑒1; 𝑒2

191

the scope of variable 𝑥 is the expression 𝑒2 because 𝑒2 is evaluated in an extended environment
with a binding for 𝑥.

It is informative to see how the rules correspond to implementing an interpreter:

def eval(env: Env, e: Expr): Expr = e match {
// EvalVal
case v if isValue(v) => v
// EvalPlus
case Binary(Plus, e1, e2) => {

val v1 = eval(env, e1)
val v2 = eval(env, e2)
N(toNumber(v1) + toNumber(v2))

}
// EvalVar
case Var(x) => lookup(env, x)
// EvalConstDecl
case ConstDecl(x, e1, e2) => {

val v1 = eval(env, e1)
eval(extend(env, x, v1), e2)

}
}

e_const_i_two_trueplusi
val v_const_i_two_trueplusi = eval(empty, e_const_i_two_trueplusi)
assert(v_const_i_two_trueplusi == N(3))

defined function eval
res13_1: ConstDecl = ConstDecl(
x = "i",
e1 = N(n = 2.0),
e2 = Binary(bop = Plus, e1 = B(b = true), e2 = Var(x = "i"))

)
v_const_i_two_trueplusi: Expr = N(n = 3.0)

18.6 JavaScripty: Variables, Numbers, and Booleans

Figure 18.1 describes the syntax of a JavaScripty variant with variables, numbers, and booleans
using a number of syntactic categories. The main syntactic category is expressions. We con-
sider a program to be an expression. Expressions 𝑒 consist of variables, a variable binding

192

expression, value literals, unary operator expressions, binary operator expressions, and a con-
ditional if-then-else expression. Value literals 𝑣 can be numbers (double-precision floating
point) and booleans. This set of arithmetic and logic expressions is the usual core of any
programming language. Strings, side effects, and functions are notably missing.

expressions 𝑒 ∶∶= 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2 ∣ 𝑣 ∣ uop 𝑒1 ∣ 𝑒1 bop 𝑒2 ∣ 𝑒1 ? 𝑒2 : 𝑒3
values 𝑣 ∶∶= 𝑛 ∣ 𝑏

unary operators uop ∶∶= - ∣ !
binary operators bop ∶∶= + ∣ - ∣ * ∣ / ∣ && ∣ || ∣ === ∣ !== ∣ < ∣ <= ∣ > ∣ >=

variables 𝑥

Figure 18.1: Syntax of JavaScripty with variables, numbers, and booleans (i.e., binding, arith-
metic, and logic).

We give in Figure 18.2, a big-step operational semantics for the JavaScripty variant defined
above. That is, we give inference rules that define the evaluation judgment form: 𝐸 ⊢ 𝑒 ⇓ 𝑣.

In rule EvalArith, we lump all of the arithmetic operators +, -, *, and / together. We abuse
notation here slightly by treating the bop as the corresponding meta-language operator in
𝑛1 bop 𝑛2.

It is informative to study the complete set of inference rules and think about how the rules
correspond to implementing an interpreter.

Observe that the EvalAndTrue, EvalAndFalse, EvalOrTrue, EvalOrFalse, EvalIfTrue,
and EvalIfFalse rules use coercions to booleans but do not necessarily return boolean. The
EvalEquality rule shows that equality === and disequality !== apply to any values without
coercion, while the EvalInequality rule says that inequalites apply after coercing to num-
bers.

Does this reveal any bugs in your implementation in the previous lab?

18.7 JavaScripty: Strings

Let us consider extending our big-step semantics for JavaScripty with string values.

values 𝑣 ∶∶= str
strings str

We have seen that in JavaScript some operators are overloaded for numbers and strings (e.g.,
+ for string concatenation and <, <=, >, and >= for string comparisons).

193

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalVar

𝐸 ⊢ 𝑥 ⇓ 𝐸(𝑥)

EvalConstDecl
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸[𝑥 ↦ 𝑣1] ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ const 𝑥 = 𝑒1; 𝑒2 ⇓ 𝑣2

EvalVal

𝐸 ⊢ 𝑣 ⇓ 𝑣

EvalNeg
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ 𝑛1

𝐸 ⊢ - 𝑒1 ⇓ −𝑛1

EvalNot
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ 𝑏1

𝐸 ⊢ ! 𝑒1 ⇓ ¬𝑏1

EvalArith
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2 bop ∈ {+, -, *, /}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑛1 bop 𝑛2

EvalAndTrue
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ true 𝐸 ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ 𝑒1 && 𝑒2 ⇓ 𝑣2

EvalAndFalse
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ false

𝐸 ⊢ 𝑒1 && 𝑒2 ⇓ 𝑣1

EvalOrTrue
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ true

𝐸 ⊢ 𝑒1 || 𝑒2 ⇓ 𝑣1

EvalOrFalse
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ false 𝐸 ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ 𝑒1 || 𝑒2 ⇓ 𝑣2

EvalIfTrue
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ true 𝐸 ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ 𝑒1 ? 𝑒2 : 𝑒3 ⇓ 𝑣2

EvalIfFalse
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝑣1 ⇝ false 𝐸 ⊢ 𝑒3 ⇓ 𝑣3

𝐸 ⊢ 𝑒1 ? 𝑒2 : 𝑒3 ⇓ 𝑣3

EvalEquality
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 bop ∈ {===, !==}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑣1 bop 𝑣2

EvalInequality
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2 bop ∈ {<, <=, >, >=}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑛1 bop 𝑛2

Figure 18.2: Big-step operational semantics of JavaScripty with variables, numbers, and
booleans (i.e., binding, arithmetic, and logic).

194

Where we need to do some detective work is when these string operations apply with type
coercions. When is a value coerced into a number versus a string?

Let’s consider string concatenation +:

"hello" + 3
3 + "hello"

It appears that string concatenation applies if either operand is a string str.

How about string comparison?

0 < "1"
0 < "hello"
"0" < 1
"a" < "ab"

It appears that string comparison only applies if both operands are strings.

To capture these observations, we replace rules EvalArith and EvalInequality in Figure 18.2
with the following rules shown in Figure 18.3.

The rules EvalPlusString1 and EvalPlusString2 apply string concatenation if either 𝑒1 or
𝑒2 evaluate to strings, whereas EvalInequalityString applies if and only if both 𝑒1 and 𝑒2
evaluate to strings. The other rules carefully state that number operations apply in all other
cases.

195

𝐸 ⊢ 𝑒 ⇓ 𝑣

EvalPlusNumber
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣1 ≠ str1 𝑣2 ≠ str2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2

𝐸 ⊢ 𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

EvalPlusString1
𝐸 ⊢ 𝑒1 ⇓ str1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣2 ⇝ str2

𝐸 ⊢ 𝑒1 + 𝑒2 ⇓ str1str2

EvalPlusString2
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ str2 𝑣1 ⇝ str1

𝐸 ⊢ 𝑒1 + 𝑒2 ⇓ str1str2

EvalArith
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2 bop ∈ {-, *, /}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑛1 bop 𝑛2

EvalInequalityNumber1
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣1 ≠ str1 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2 bop ∈ {<, <=, >, >=}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑛1 bop 𝑛2

EvalInequalityNumber2
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣2 ≠ str2 𝑣1 ⇝ 𝑛1 𝑣2 ⇝ 𝑛2 bop ∈ {<, <=, >, >=}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑛1 bop 𝑛2

EvalInequalityString
𝐸 ⊢ 𝑒1 ⇓ str1 𝐸 ⊢ 𝑒2 ⇓ str2 bop ∈ {<, <=, >, >=}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ str1 bop str2

Figure 18.3: Updating the big-step semantics of JavaScripty with variables, numbers, and
booleans (Figure 18.2) to include strings.

196

19 Functions and Dynamic Scoping

19.1 Functions Are Values

A code abstraction mechanism like functions is essential to what we would consider a program-
ming language. Let us consider our object language JavaScripty with variables and base types
(Section 18.6)

trait Expr // e
case class N(n: Double) extends Expr // e ::= n
case class Var(x: String) extends Expr // e ::= x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // e ::= const x = e1; e2

defined trait Expr
defined class N
defined class Var
defined class ConstDecl

and extend it with function values:

values 𝑣 ∶∶= (𝑥) => 𝑒1
expressions 𝑒 ∶∶= 𝑒1(𝑒2)

variables 𝑥
(19.1)

case class Fun(x: String, e1: Expr) extends Expr // e ::= (x) => e1
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

defined class Fun
defined class Call

A function literal (𝑥) => 𝑒1 has a formal parameter 𝑥 and function body 𝑒1. Note that a
function literal is a value because it is an expression that cannot reduce any further until it is
called. A function call expression 𝑒1(𝑒2) expects 𝑒1 to evaluate to a function literal and 𝑒2 to
a value (called the actual argument) to use for the formal parameter in evaluating the function
body.

197

def isValue(e: Expr): Boolean = e match {
case N(_) | Fun(_, _) => true
case _ => false

}

type Env = Map[String, Expr]
val empty: Env = Map.empty
def lookup(env: Env, x: String): Expr = env(x)
def extend(env: Env, x: String, v: Expr): Env = {
require(isValue(v))
env + (x -> v)

}

defined function isValue
defined type Env
empty: Env = Map()
defined function lookup
defined function extend

case class DynamicTypeError(e: Expr) extends Exception {
override def toString: String = s"TypeError: in expression $e"

}

defined class DynamicTypeError

Functions as we have here are called first-class functions because they are values that can be
passed and returned like any other type of values (e.g., numbers, booleans, strings).

For simplicity and to focus in on their essence, all functions have exactly one parameter and
are anonymous and cannot be recursive. Since functions are first-class values, we can define
multi-parameter functions via currying (i.e., functions that return functions).

19.2 Dynamic Scoping

We first try to implement function call in the most straightforward way. What we will discover
is that we have made a historical mistake and have ended up with a form of dynamic scoping.

The evaluation judgment form 𝐸 ⊢ 𝑒 ⇓ 𝑣 says, “In value environment 𝐸, expression 𝑒 evaluates
to value 𝑣.” We extend the definition of this judgment form for function call 𝑒1(𝑒2) with the
EvalCall rule as follows:

198

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalCall
𝐸 ⊢ 𝑒1 ⇓ (𝑥) => 𝑒′ 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝐸[𝑥 ↦ 𝑣2] ⊢ 𝑒′ ⇓ 𝑣′

𝐸 ⊢ 𝑒1(𝑒2) ⇓ 𝑣′

Figure 19.1: Defining evaluation of a function call expression that “accidentally” implements
dynamic scoping.

This rule says that we evaluate 𝑒1 to a function value (𝑥) => 𝑒′ and evaluate 𝑒2 to a value 𝑣2.
Then, we extend the environment to bind the formal parameter 𝑥 to the actual argument 𝑣2
to evaluate the function body expression 𝑒′ to a value 𝑣′.

First, observe that we can only evaluate a call expression 𝑒1(𝑒2) if 𝑒1 evaluates to a function.
It is a type error if 𝑒1 does not evaluate to a function. This is indeed one of the few run-time
errors in JavaScript.

Let us implement this judgment form:

def eval(env: Env, e: Expr): Expr = e match {
// EvalVal
case v if isValue(e) => v
// EvalVar
case Var(x) => lookup(env, x)
// EvalConstDecl
case ConstDecl(x, e1, e2) => {

val v1 = eval(env, e1)
eval(extend(env, x, v1), e2)

}
// EvalCall
case Call(e1, e2) => eval(env, e1) match {

case Fun(x, e) => {
val v2 = eval(env, e2)
eval(extend(env, x, v2), e)

}
case _ => throw DynamicTypeError(e)

}
}

defined function eval

eval(empty, Call(N(1), N(2)))

199

Now, recall that the scope of a variable in most languages is a static property—for any variable
use, the variable binding site it references does not depend on program execution. Dynamic
scoping is thus when the binding site of the variable being used does depend on program
execution.

If we study EvalCall closely (Figure 19.1), we can get a hint of the “accidental” appearance
of dynamic scoping. The function body expression 𝑒′ may have free variable uses that under
static scoping should reference variables where the function is defined, but it is being evaluated
in a value environment 𝐸 that is potentially very different from the value environment when it
was defined. Can we come up with example that exhibits dynamic scoping with this EvalCall
rule?

Let us reimplement this judgment for with some instrumentation to show derivations:

def eval(level: Int, env: Env, e: Expr): Expr = {
val indent = " " * level
val v = e match {

// EvalVal
case v if isValue(e) => {
println(s"\n${indent}------------------------ EvalVal")
v

}
// EvalVar
case Var(x) => {

val v = lookup(env, x)
println(s"\n${indent}------------------------ EvalVar")
v

}
// EvalConstDecl
case ConstDecl(x, e1, e2) => {

val v1 = eval(level, env, e1)
val v2 = eval(level + 6, extend(env, x, v1), e2)
println(s"${indent}------------------------ EvalConstDecl")
v2

}
// EvalCall
case Call(e1, e2) => {
eval(level, env, e1) match {

case Fun(x, e) => {
val v2 = eval(level + 4, env, e2)
val v = eval(level + 8, extend(env, x, v2), e)
println(s"${indent}------------------------ EvalCall")
v

200

}
case _ => throw DynamicTypeError(e)

}
}

}
println(s"${indent}$env � $e � $v")
v

}

def eval(e: Expr): Expr = eval(0, empty, e)

defined function eval
defined function eval

We use indention to indicate the different premises of a multi-premise rule:

eval(Call(Fun("x", Var("x")), N(2)))

------------------------ EvalVal
Map() � Fun(x,Var(x)) � Fun(x,Var(x))

------------------------ EvalVal
Map() � N(2.0) � N(2.0)

------------------------ EvalVar
Map(x -> N(2.0)) � Var(x) � N(2.0)

------------------------ EvalCall
Map() � Call(Fun(x,Var(x)),N(2.0)) � N(2.0)

res7: Expr = N(n = 2.0)

To construct an example that exhibits dynamic scoping, we define a function that under static
scoping references an outer variable binding that gets shadowed by a variable when its body
is later evaluated:

1 const x = 1;
2 const g = (y) => x;
3 ((x) => g(2))(3)

201

Under static scoping, the variable use x in the function defined on line 2 references the variable
binding of x on line 1 and should always return 1. However, using EvalCall in Figure 19.1,
it ends up referencing the variable binding at line 3 and returning 3:

val e_dynamicScoping =
ConstDecl("x", N(1),
ConstDecl("g", Fun("y", Var("x")),
Call(Fun("x", Call(Var("g"), N(2))), N(3))))

val v_dynamicScoping = eval(e_dynamicScoping)

------------------------ EvalVal
Map() � N(1.0) � N(1.0)

------------------------ EvalVal
Map(x -> N(1.0)) � Fun(y,Var(x)) � Fun(y,Var(x))

------------------------ EvalVal
Map(x -> N(1.0), g -> Fun(y,Var(x))) � Fun(x,Call(Var(g),N(2.0))) � Fun(x,Call(Var(g),N(2.0)))

------------------------ EvalVal
Map(x -> N(1.0), g -> Fun(y,Var(x))) � N(3.0) � N(3.0)

------------------------ EvalVar
Map(x -> N(3.0), g -> Fun(y,Var(x))) � Var(g) � Fun(y,Var(x))

------------------------ EvalVal
Map(x -> N(3.0), g -> Fun(y,Var(x))) � N(2.0) � N(2.0)

------------------------ EvalVar
Map(x -> N(3.0), g -> Fun(y,Var(x)), y -> N(2.0)) � Var(x) � N(3.0)

------------------------ EvalCall
Map(x -> N(3.0), g -> Fun(y,Var(x))) � Call(Var(g),N(2.0)) � N(3.0)

------------------------ EvalCall
Map(x -> N(1.0), g -> Fun(y,Var(x))) � Call(Fun(x,Call(Var(g),N(2.0))),N(3.0)) � N(3.0)

------------------------ EvalConstDecl
Map(x -> N(1.0)) � ConstDecl(g,Fun(y,Var(x)),Call(Fun(x,Call(Var(g),N(2.0))),N(3.0))) � N(3.0)

------------------------ EvalConstDecl
Map() � ConstDecl(x,N(1.0),ConstDecl(g,Fun(y,Var(x)),Call(Fun(x,Call(Var(g),N(2.0))),N(3.0)))) � N(3.0)

e_dynamicScoping: ConstDecl = ConstDecl(

202

x = "x",
e1 = N(n = 1.0),
e2 = ConstDecl(

x = "g",
e1 = Fun(x = "y", e1 = Var(x = "x")),
e2 = Call(
e1 = Fun(x = "x", e1 = Call(e1 = Var(x = "g"), e2 = N(n = 2.0))),
e2 = N(n = 3.0)

)
)

)
v_dynamicScoping: Expr = N(n = 3.0)

19.3 Closures

The example that exhibits dynamic scoping suggests some possible fixes to implement static
scoping. We observe that a free variable use in a function body references a variable binding
at the time the function is defined, not when the function body is evaluated. This suggests
that a function body should be evaluated in the value environment when it is defined.

A closure is exactly this (𝑥) => 𝑒1[𝐸] —a pair consisting of a function literal (𝑥) => 𝑒1 and its
value environment at the time of its definition 𝐸. Function values are now closures:

expressions 𝑒 ∶∶= (𝑥) => 𝑒1 ∣ 𝑒1(𝑒2)
values 𝑣 ∶∶= (𝑥) => 𝑒1[𝐸]

variables 𝑥

case class Closure(fun: Fun, env: Env) extends Expr // e ::= (x) => e1[E]

def isValue(e: Expr): Boolean = e match {
case N(_) | Closure(_, _) => true
case _ => false

}

type Env = Map[String, Expr]
val empty: Env = Map.empty
def lookup(env: Env, x: String): Expr = env(x)
def extend(env: Env, x: String, v: Expr): Env = {
require(isValue(v))
env + (x -> v)

}

203

defined class Closure
defined function isValue
defined type Env
empty: Env = Map()
defined function lookup
defined function extend

We add a rule EvalFun that says that evaluating a function literal creates a closure. Then,
evaluating the function body 𝑒′ in EvalCall uses the value environment from the closure
𝐸′:

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalFun

𝐸 ⊢ (𝑥) => 𝑒 ⇓ (𝑥) => 𝑒[𝐸]

EvalCall
𝐸 ⊢ 𝑒1 ⇓ (𝑥) => 𝑒′[𝐸′] 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝐸′[𝑥 ↦ 𝑣2] ⊢ 𝑒′ ⇓ 𝑣′

𝐸 ⊢ 𝑒1(𝑒2) ⇓ 𝑣′

def eval(env: Env, e: Expr): Expr = e match {
// EvalVal
case v if isValue(e) => v
// EvalVar
case Var(x) => lookup(env, x)
// EvalConstDecl
case ConstDecl(x, e1, e2) => {

val v1 = eval(env, e1)
eval(extend(env, x, v1), e2)

}
// EvalFun
case f @ Fun(x, e) => Closure(f, env)
// EvalCall
case Call(e1, e2) => eval(env, e1) match {

case Closure(Fun(x, e_), env_) => {
val v2 = eval(env, e2)
eval(extend(env_, x, v2), e_)

}
case _ => throw DynamicTypeError(e)

}
}

val v_dynamicScopingFixed = eval(empty, e_dynamicScoping)

204

defined function eval
v_dynamicScopingFixed: Expr = N(n = 1.0)

19.4 Substitution

This observation about “accidental” dynamic scoping also suggests another strategy for im-
plementing static scoping. We avoid the chance of dynamic scoping if we avoid free variables,
that is, we maintain the invariant that we evaluate only closed expressions. It is possible to
maintain this invariant by using substitution.

We write [𝑒1/𝑥1]𝑒 for a scope-respecting substitution of expression 𝑒1 for free variable uses of
𝑥1 in expression 𝑒. This function can be defined by induction on the structure of 𝑒, though
it does require some care to respect binding and scope. In particular, substitution applies to
free variable uses of 𝑥1 and must be capture-avoiding (i.e., avoiding the capture of any free
variable uses in 𝑒1).

Given a scope-respecting substitution, we define an evaluation judgment for only closed ex-
pressions again 𝑒 ⇓ 𝑣.

We return to the case where function literals are values (though they will be closed).

values 𝑣 ∶∶= (𝑥) => 𝑒′

expressions 𝑒 ∶∶= 𝑒1(𝑒2)
variables 𝑥

In EvalConstDecl and EvalCall, we can see that we use substitution to effectively “apply”
the value environment eagerly one-binding-at-a-time to the expression so that we never need
to reify it:

𝑒 ⇓ 𝑣 no EvalVar rule

EvalConstDecl
𝑒1 ⇓ 𝑣1 [𝑣1/𝑥]𝑒2 ⇓ 𝑣2

const 𝑥 = 𝑒1; 𝑒2 ⇓ 𝑣2
no EvalFun rule

EvalCall
𝑒1 ⇓ (𝑥) => 𝑒′ 𝑒2 ⇓ 𝑣2 [𝑣2/𝑥]𝑒′ ⇓ 𝑣′

𝑒1(𝑒2) ⇓ 𝑣′

There is no EvalVar rule because variable uses are replaced by the values their bound when
the binding site is evaluated. And there is no EvalFun because function literals are again
function values.

205

19.5 Recursive Functions

Thus far we have considered anonymous function literals (𝑦) => 𝑒′ that cannot be recursive. To
allow for recursive function definitions, we enrich the function expression Fun with a parameter
for an optional variable name to refer to itself:

case class Fun(xopt: Option[String], y: String, e1: Expr) extends Expr // e ::= xopt(y) => e1

defined class Fun

Correspondingly, let us extend our abstract syntax for JavaScripty as follows:

expressions 𝑒 ∶∶= 𝑥?(𝑦) => 𝑒1 ∣ 𝑒1(𝑒2)
optional variables 𝑥? ∶∶= 𝑥 ∣ 𝜀

variables 𝑥

Observe that we define 𝑥? as the non-terminal for an optional variable.

When a function expression has a name 𝑥(𝑦) => 𝑒′, then it is can be recursive. In particular,
variable 𝑥 is an additional formal parameter, and the function body 𝑒′ may have free variable
uses of 𝑥. The variable 𝑥 gets bound to itself (i.e., the function value for 𝑥(𝑦) => 𝑒′) on a
function call.

In terms of the Expr representation, the xopt can be Some(𝑥) corresponding to 𝑥(𝑦) => 𝑒1
or None corresponding to (𝑦) => 𝑒1.

Note that we consider 𝑥?(𝑦) => 𝑒1 abstract syntax. In particular, 𝑥(𝑦) => 𝑒1 is not valid
concrete syntax in JavaScript, as we discuss next.

Exercise 19.1 (Big-Step Semantics for Potentially-Recursive Functions). Give a rule
EvalCallRec that defines function call to a named-function literal 𝑥(𝑦) => 𝑒1. Either extend
the evaluation judgment form for potentially-open expressions with value environments
𝐸 ⊢ 𝑒 ⇓ 𝑣 using closures or the evaluation judgment form for closed expressions 𝑒 ⇓ 𝑣 or both.

206

19.6 JavaScripty: Concrete Syntax: Functions

Recall from Section 14.11 that in the concrete syntax, const-bindings are declarations (and
not expressions).

declarations 𝑑 ∶∶= const 𝑥 = 𝑒; ∣ 𝑠 ∣ 𝑑1 𝑑2 ∣ 𝜀
statements 𝑠 ∶∶= 𝑒; ∣ { 𝑑 } ∣ ;
expressions 𝑒 ∶∶= (𝑒) ∣ ⋯ ∣ 𝑒1(𝑒2) ∣ (𝑥) => 𝑒

∣ (𝑥) => { 𝑏𝑜𝑑𝑦 } ∣ function 𝑥?(𝑦) { 𝑏𝑜𝑑𝑦 }
variables 𝑥, 𝑦

To accommodate declarations in function bodies, JavaScript has additional concrete syntax
for function literals (in addition to (𝑥) => 𝑒):

(𝑥) => { 𝑏𝑜𝑑𝑦 } and function 𝑥?(𝑦) { 𝑏𝑜𝑑𝑦 }

In both of these variants, a function body 𝑏𝑜𝑑𝑦 is surrounded by curly braces (i.e., { })
and consists of a declaration 𝑑 (e.g., for const-bindings) followed by a return keyword, a
return-expression 𝑒, and a trailing ;:

function bodies 𝑏𝑜𝑑𝑦 ∶∶= 𝑑 return 𝑒;

Note that JavaScript permits function bodies that leave out the return keyword or the return-
expression 𝑒. When the return keyword is left out, the meaning of a function body is to
implicitly return undefined.

The function keyword syntax may have a function name but whose definition must be a
function body { 𝑏𝑜𝑑𝑦 }.

207

20 Exercise: Big-Step Operational Semantics

Learning Goals

The primary learning goals of this assignment are to build intuition for the following:

• how to read a formal specification of a language semantics;
• how dynamic scoping arises; and
• big-step interpretation.

Instructions

This assignment asks you to write Scala code. There are restrictions associated with how you
can solve these problems. Please pay careful heed to those. If you are unsure, ask the course
staff.

Note that ??? indicates that there is a missing function or code fragment that needs to be
filled in. Make sure that you remove the ??? and replace it with the answer.

Use the test cases provided to test your implementations. You are also encouraged to write
your own test cases to help debug your work. However, please delete any extra cells you may
have created lest they break an autograder.

Imports

import $ivy.$, org.scalatest._, events._, flatspec._

defined function report
defined function assertPassed
defined function passed
defined function test

208

Listing 20.1 org.scalatest._

// Run this cell FIRST before testing.
import $ivy.`org.scalatest::scalatest:3.2.19`, org.scalatest._, events._, flatspec._
def report(suite: Suite): Unit = suite.execute(stats = true)
def assertPassed(suite: Suite): Unit =
suite.run(None, Args(new Reporter {

def apply(e: Event) = e match {
case e @ (_: TestFailed) => assert(false, s"${e.message} (${e.testName})")
case _ => ()

}
}))

def passed(points: Int): Unit = {
require(points >=0)
if (points == 1) println("*** � Tests Passed (1 point) ***")
else println(s"*** � Tests Passed ($points points) ***")

}
def test(suite: Suite, points: Int): Unit = {
report(suite)
assertPassed(suite)
passed(points)

}

20.1 A Big-Step Javascripty Interpreter

We now have the formal tools to specify exactly how a JavaScripty program should behave.
Unless otherwise specified, we continue to try to match JavaScript semantics, though we are
no longer beholden to it. Thus, it is still useful to write little test JavaScript programs and
see how the test should behave.

In this exercise, we extend JavaScripty with functions. We try to implement the eval function
in the most straightforward way. What we will discover is that we have made a historical
mistake and have ended up with a form of dynamic scoping.

For the purpose of this exercise, we will limit the scope of JavaScripty by restricting expression
forms and simplifying semantics as appropriate for pedagogical purposes. In particular, we
simplify the semantics by no longer performing implicit type coercions.

209

20.1.1 Syntax

We consider the following abstract syntax for this exercise. Note that new constructs for
functions are highlighted.

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑏 ∣ 𝑒1 bop 𝑒2 ∣ 𝑒1 ? 𝑒2 : 𝑒3 ∣ 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2
∣ (𝑥) => 𝑒1 ∣ 𝑒1(𝑒2)

values 𝑣 ∶∶= 𝑛 ∣ 𝑏∣ (𝑥) => 𝑒1
binary operators bop ∶∶= + ∣ === ∣ !==

variables 𝑥
numbers 𝑛
booleans 𝑏

Observe that we consider only base values numbers 𝑛 and booleans 𝑏 and have significantly
reduced the number of expression forms we consider.

Like in the book chapter, all functions are one argument functions for simplicity.

20.2 Dynamic Scoping Test

Exercise 20.1 (5 points). Write a JavaScript program that behaves differently under dynamic
scoping versus static scoping (and does not crash). This will get us used to the syntax, while
providing a crucial test case for our interpreter.

Edit this cell:

const x = 10;
const f = (a) => {
???

}
const g = (b) => {
???

}
g(-1)

Explain in 1-2 sentences why you think this program would behave differently under dynamic
scoping versus static scoping.

Edit this cell:

???

210

Notes

• We are using const to name functions, that is, we are binding an expression, which is a
function, to a variable. This binding allows us to get it later, but it does not allow us
call it inside the function definition (i.e., recursion).

• We are providing a throw-away parameter to our function because according to our
syntax functions have exactly one parameter.

• As noted above, we are simplifying some semantics in this exercise compared with the
previous lab: implicit type coercions work in JavaScript and in the previous lab, but you
will not include them in your implementation on this homework. Therefore, your test
case cannot have any implicit type conversions.

• In order to execute the program, you will need to switch your kernal to Deno, the
Javascript kernel for Jupyter.

20.3 Reading an Operational Semantics

In this homework, we start to see specifications of programming language semantics. A big-step
operational semantics of this small fragment of JavaScripty is given below. Except perhaps
for the assigned reading, this figure (Figure 20.1) may be one of the first times that you are
reading a formal semantics of a programming language. It may seem daunting at first, but it
will be become easier with practice. This homework is such an opportunity to practice.

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalVar

𝐸 ⊢ 𝑥 ⇓ 𝐸(𝑥)

EvalConstDecl
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸[𝑥 ↦ 𝑣1] ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ const 𝑥 = 𝑒1; 𝑒2 ⇓ 𝑣2

EvalVal

𝐸 ⊢ 𝑣 ⇓ 𝑣

EvalPlusNumber
𝐸 ⊢ 𝑒1 ⇓ 𝑛1 𝐸 ⊢ 𝑒2 ⇓ 𝑛2

𝐸 ⊢ 𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

EvalEquality
𝐸 ⊢ 𝑒1 ⇓ 𝑣1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 bop ∈ {===, !==}

𝐸 ⊢ 𝑒1 bop 𝑒2 ⇓ 𝑣1 bop 𝑣2

EvalIfTrue
𝐸 ⊢ 𝑒1 ⇓ true 𝐸 ⊢ 𝑒2 ⇓ 𝑣2

𝐸 ⊢ 𝑒1 ? 𝑒2 : 𝑒3 ⇓ 𝑣2

EvalIfFalse
𝐸 ⊢ 𝑒1 ⇓ false 𝐸 ⊢ 𝑒3 ⇓ 𝑣3

𝐸 ⊢ 𝑒1 ? 𝑒2 : 𝑒3 ⇓ 𝑣3

Figure 20.1: A big-step operational semantics of a fragment of JavaScripty with some arith-
metic and logic expressions, as well as variable binding. We define the judgment
form 𝐸 ⊢ 𝑒 ⇓ 𝑣, which says informally, “In value environment 𝐸, expression 𝑒
evaluates to value 𝑣.” This relation has three parameters: 𝐸, 𝑒, and 𝑣. You can
see the other parts of the judgment form as simply punctuation.

211

A value environment 𝐸 is a finite map from variables 𝑥 to values 𝑣 that we write as follows:

value environments 𝐸, env ∶∶= ⋅ ∣ 𝐸[𝑥 ↦ 𝑣]

We write ⋅ for the empty environment and 𝐸[𝑥 ↦ 𝑣] as the environment that maps 𝑥 to 𝑣 but
is otherwise the same as 𝐸 (i.e., extends 𝐸 with mapping 𝑥 to 𝑣). Additionally, we write 𝐸(𝑥)
for looking up the value of 𝑥 in environment 𝐸.

A formal semantics enables us to describe the semantics of a programming language clearly
and concisely. The initial barrier is getting used to the meta-language of judgment forms and
inference rules. However, once you cross that barrier, you will see that we are telling you
exactly how to implement the interpreter—it will almost feel like cheating!

20.3.1 Strings

Exercise 20.2 (5 points). Suppose that we extend the above language with strings str and a
string concatenation 𝑒1 + 𝑒2 expression (like in JavaScript). Consider the following inference
rule for the evaluation judgment form:

EvalPlusString1
𝐸 ⊢ 𝑒1 ⇓ str1 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝑣2 ⇝ str2

𝐸 ⊢ 𝑒1 + 𝑒2 ⇓ str1str2

Explain in 1-2 sentences what EvalPlusString1 is stating.

Edit this cell:

???

Notes

• The 𝑣 ⇝ str judgment form says that value 𝑣 coerces to string str.

Exercise 20.3 (5 points). Let us define rules that specify evaluation of the expression 𝑒1 + 𝑒2
just like in JavaScript. Give the other rule EvalPlusString2 that concatenates strings in the
case that 𝑒2 evaluates to a string.

212

Edit this cell:

???

Explain in 1-2 sentences why you need EvalPlusString1 and EvalPlusString2 together for
interpreting string concatenation like in JavaScript.

Edit this cell:

???

Notes

You may give the rule in LaTeX math or as plain text (ascii art) approximating the math
rendering. For example,

EvalPlusString1
E |- e1 vv str1 E |- e2 vv v2 v2 ~~> str2

E |- e1 + e2 vv str1 str2

The LaTeX code for the rendered EvalPlusString1 rule above is as follows:

\inferrule[EvalPlusString1]{
E \vdash e_1 \Downarrow \mathit{str}_1
\and
E \vdash e_2 \Downarrow v_2
\and
v_2 \rightsquigarrow \mathit{str}_2

}{
E \vdash e_1 \mathbin{\texttt{+}} e_2 \Downarrow \mathit{str}_1 \mathit{str}_2

}

20.3.2 Functions

The inference rule defining evaluation of a function call (that accidentally results in dynamic
scoping) is as follows:

Exercise 20.4 (5 points). To continue this warm up and guide our implementation of these
inference rules, write out what EvalCall is stating.

Edit this cell:

???

213

EvalCall
𝐸 ⊢ 𝑒1 ⇓ (𝑥) => 𝑒′ 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝐸[𝑥 ↦ 𝑣2] ⊢ 𝑒′ ⇓ 𝑣′

𝐸 ⊢ 𝑒1(𝑒2) ⇓ 𝑣′

Figure 20.2

20.4 Implementing from Inference Rules

20.4.1 Abstract Syntax

In the following, we build up to implementing an eval function:

def eval(env: Env, e: Expr): Expr

This eval function directly corresponds the the evaluation judgment: 𝐸 ⊢ 𝑒 ⇓ 𝑣, which is
the operational semantics defined above. It takes as input a value environment 𝐸 and an
expression 𝑒 and returns a value 𝑣.

Below is the Expr type defining our abstract syntax tree in Scala. If you haven’t already,
switch back to the Scala kernel and then run the two cells below.

trait Expr // e ::=

case class Var(x: String) extends Expr // e ::= x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // e ::= const x = e1; e2

case class N(n: Double) extends Expr // e ::= n
case class B(b: Boolean) extends Expr // e ::= b

trait Bop // bop ::=
case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr // e ::= e1 bop b2

case object Plus extends Bop // bop ::= +
case object Eq extends Bop // bop ::= ===
case object Ne extends Bop // bop ::= !==

case class If(e1: Expr, e2: Expr, e3: Expr) extends Expr // e ::= e1 ? e2 : e3

case class Fun(x: String, e1: Expr) extends Expr // e ::= (x) => e1
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

214

defined trait Expr
defined class Var
defined class ConstDecl
defined class N
defined class B
defined trait Bop
defined class Binary
defined object Plus
defined object Eq
defined object Ne
defined class If
defined class Fun
defined class Call

Numbers 𝑛, booleans 𝑏, and functions (𝑥) => 𝑒1 are values, and we represent a value environ-
ment 𝐸 as a Map[String, Expr]:

def isValue(e: Expr): Boolean = e match {
case N(_) | B(_) | Fun(_, _) => true
case _ => false

}

type Env = Map[String, Expr]
val empty: Env = Map()
def lookup(env: Env, x: String): Expr = env(x)
def extend(env: Env, x: String, v: Expr): Env = {
require(isValue(v))
env + (x -> v)

}

defined function isValue
defined type Env
empty: Env = Map()
defined function lookup
defined function extend

Exercise 20.5 (5 points). Now that we have the AST type Expr defined, take your JavaScripty
test program from Exercise 20.1 and write out the AST it would parse to. This will serve as
a test for your implementation.

215

Notes

• Recall the difference between concrete and abstract syntax. Your AST here will use the
abstract syntax and be of type Expr defined above. Therefore, the AST nodes you write
in can only be constructors of Expr. For example, the return keyword is in the concrete
syntax but not a constructor of Expr.

20.4.2 Variables, Numbers, and Booleans

Exercise 20.6 (10 points). Implement eval the evaluation judgment form 𝐸 ⊢ 𝑒 ⇓ 𝑣 for all
rules except EvalCall shown in Figure 20.1. It should be noted that this implementation
should very similar to your implementation of eval in previous lab.

Notes

• It is most beneficial to first implement eval from scratch by referencing the rules shown
in Figure 20.1.

• After you implement eval here by following the rules, it may then be informative to
compare with your implementation from the previous lab (that was for a larger language
and with implicit type coercions).

• You will have unmatched cases (i.e., there are no corresponding rules), which you can
leave unimplemented with ??? or the potential for MatchError.

Tests

20.4.3 Functions

Exercise 20.7 (10 points). Extend your implementation with functions. On function calls,
you need to extend the environment for the formal parameter. Begin with what you have from
Exercise 20.6.

Notes

• This question is asking you to implement EvalCall.
• Do not worry yet about dynamic type errors, so this will still have some ???s or have

the possibility of MatchErrors.

216

Tests

20.4.4 Dynamic Typing

In the previous lab, all expressions could be evaluated to something (because of conversions).
With functions, we encounter one of the very few run-time errors in JavaScript: trying to call
something that is not a function. In JavaScript and in JavaScripty, calling a non-function
raises a run-time error. Such a run-time error is known as a dynamic type error. Languages
are called dynamically typed when they allow all syntactically valid programs to run and check
for type errors during execution.

We define a Scala exception

case class DynamicTypeError(e: Expr) extends Exception {
override def toString = s"TypeError: in expression $e"

}

defined class DynamicTypeError

to signal this case. In other words, when your interpreter discovers a dynamic type error, it
should throw this exception using the following Scala code:

throw DynamicTypeError(e)

The argument should be the input expression e to eval where the type error was detected.
That is, the expression where there is no possible rule to continue. For example, in the case
of calling a non-function, the type error should be reported on the Call node and not any
sub-expression.

Exercise 20.8 (10 points). Add support for checking for all dynamic type errors. You should
have no possibility for a MatchError or a NotImplementedError. Start with what you have
from Exercise 20.7.

Tests

20.4.5 Dynamic Scoping

Exercise 20.9 (5 points). Below is a cell that runs the AST from the test case you wrote in
Exercise 20.5 with your interpreter implementation.

217

Does it evaluate to what your excepted? The evaluation output above should be different from
what it would evaluate to with a JavaScript interpreter, such as Deno. Ensure that the results
are different and write below what each interpreter evaluates to.

Edit this cell:

???

It seems like we implemented dynamic scoping instead of static scoping. Explain the failed
test case and how your interpreter behaves differently compared to a JavaScript interpreter.
Furthermore, think about why this is the case and explain in 1-2 sentences why your interpreter
behaves differently.

Edit this cell:

???

20.4.6 Closures

In order to fix our dynamic scoping issue, we will implement explicit closures. That is, when
functions are evaluated, they will use the value environment in which they were defined.

Here are the updates to our abstract syntax.

expressions 𝑒 ∶∶= (𝑥) => 𝑒1 ∣ 𝑒1(𝑒2)
values 𝑣 ∶∶= (𝑥) => 𝑒1[𝐸]

variables 𝑥

Notice that now, closures are values (and functions are not), while functions are still expres-
sions.

We also add the EvalFun rule to our operational semantics, and edit the EvalCall rule, seen
below.

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalFun

𝐸 ⊢ (𝑥) => 𝑒 ⇓ (𝑥) => 𝑒[𝐸]

EvalCall
𝐸 ⊢ 𝑒1 ⇓ (𝑥) => 𝑒′[𝐸′] 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝐸′[𝑥 ↦ 𝑣2] ⊢ 𝑒′ ⇓ 𝑣′

𝐸 ⊢ 𝑒1(𝑒2) ⇓ 𝑣′

In order to implement this, we will add Closure to our Expr type, and edit other helper
functions as needed.

218

case class Closure(fun: Fun, env: Env) extends Expr
def isValue(e: Expr): Boolean = e match {

case N(_) | B(_) | Closure(_, _) => true
case _ => false

}
def extend(env: Env, x: String, v: Expr): Env = {
require(isValue(v))
env + (x -> v)

}

defined class Closure
defined function isValue
defined function extend

Exercise 20.10 (10 points). With the above, implement a new version of eval that uses
closures to enforce static scoping. Begin with what you have from Exercise 20.8.

Tests

This code tests your new implementation against the dynamic scoping test case you wrote:

If you’re implementation is correct, it should evaluate to what a JavaScript interpreter evalu-
ates it to.

20.5 Implementing Recursive Functions (Accelerated)

The remaining exercises are for those who want to go deeper and take an “accelerated” version
of this course.

We begin by extending our abstract syntax to allow for recursive functions. To call a function
within itself, we permit functions to have a variable identifier to refer to itself. If the identifier
is present, then it can be used for recursion.

expressions 𝑒 ∶∶= 𝑥?(𝑦) => 𝑒1 ∣ 𝑒1(𝑒2)
optional variables 𝑥? ∶∶= 𝑥 ∣ 𝜀

variables 𝑥

219

20.5.1 Defining Inference Rules

Exercise 20.11 (10 points). To allow for recursion, at a function call, we must bind the
function identifier to the function value when evaluating the function body. Give a inference
rule called EvalCallRec that describes this semantics.

Edit this cell:

???

20.5.2 Writing a Test Case

Exercise 20.12 (1 point). Write a function sumOneToN that computes the sum from 1 to n
using the fragment of JavaScripty in this assignment.

Edit this cell:

In order to allow for recursive, we must edit our Fun constructor to accept an optional variable.
(We must also re-run the other constructor and helper functions that rely on Fun.)

Exercise 20.13 (4 points). Now that we have an abstract syntax tree node to write recursive
functions, create an Expr that is a recursive function which computes the sum from 1 to a
parameter n. This will be used in a test case for an updated version of eval. Write out the
AST that your sumOneToN function will be parsed to.

Edit this cell:

Exercise 20.14 (10 points). Rewrite your eval function to handle recursive functions.

This cell tests your implementation against your test case sumOneToN.

Tests

220

21 Evaluation Order

In defining a big-step operational semantics (Section 18.1), we have carefully specified several
aspects of how the expression 𝑒1 + 𝑒2 should be evaluated. In essence, it says that it adds
two numbers that result from evaluating 𝑒1 and 𝑒2. However, there is still at least one more
semantic question that we have not specified, “Is 𝑒1 evaluated first and then 𝑒2 or vice versa,
or are they evaluated concurrently?”

Why does this question matter? Consider the JavaScripty expression:

(console.log(1), 1) + (console.log(2), 2)

The , operator is a sequencing operator. In particular, 𝑒1 , 𝑒2 first evaluates 𝑒1 to a value
and then evaluates 𝑒2 to value; the value of the whole expression is the value of 𝑒2, while the
value of 𝑒1 is simply thrown away. Furthermore, console.log(𝑒1) evaluates its argument to
a value and then prints to the console a representation of that value. If the left operand of +
is evaluated first before the right operand, then the above expression prints 1 and then 2. If
the operands of are evaluated in the opposite order, then 2 is printed first followed by 1. Note
that the final value is 3 regardless of the evaluation order.

The evaluation order matters because the console.log(𝑒1) expression has a side effect.
It prints to the screen. As alluded to early on in discussing functional versus imperative
computation (Section 3.1), an expression free of side effects (i.e., is pure) has the advantage
that the evaluation order cannot be observed (i.e., does not matter from the programmer’s
perspective). Having this property is also known as being referentially transparent, that is,
taking an expression and replacing any of its subexpressions by the subexpression’s value
cannot be observed as evaluating any differently than evaluating the expression itself. So far
in JavaScripty, our only side-effecting expression is console.log(𝑒1). If we remove the
console.logs from the above expression, then the evaluation order cannot be observed.

21.1 A Small-Step Operational Semantics

The big-step operational semantics (Section 18.1) does give us a nice specification for imple-
menting an interpreter, but it does leave some semantic choices like evaluation order implicit.
Intuitively, it specifies what the value of an expression should be (if it exists) but not precisely
the steps to get to the value.

221

We have already used a notation for describing a one-step evaluation relation:

𝑒 ⟶ 𝑒′

This notation is a judgment form stating informally, “Expression 𝑒 can take one step of eval-
uation to expression 𝑒′.” Defining this judgment allows us to more precisely state how to take
one step of evaluation, that is, how to make a single reduction step. Once we know how to
reduce expressions, we can evaluate an expression 𝑒 by repeatedly applying reduction until
reaching a value. Thus, such a definition describes an operational semantics and intuitively an
interpreter for expressions 𝑒. This style of operational semantics where we specify reduction
steps is called a small-step operational semantics.

In contrast to previous chapters, we will not extend this judgment form with value environ-
ments for free variables. Instead, we define the one-step reduction relation on closed expres-
sions, that is, expressions without any free variables. If we require the “top-level” program to
be a closed expression, then we can ensure reduction only sees closed expressions by intuitively
“applying the environment” eagerly via substitution. That is, variable uses are replaced by the
values to which they are bound before reduction gets to them. As an example, we will define
reduction so that the following judgment holds:

const one = 1; one + one ⟶ 1 + 1

This choice to use substitution instead of explicit environments is orthogonal to specifying
the semantics using small-step or big-step (i.e., one could use substitution with big-step as
in Section 19.4 or environments with small-step). Explicit environments just get a bit more
unwieldy here.

21.2 One Type of Values

Let us consider an object language with just numbers 𝑛, a unary arithmetic operator -, and a
binary arithmetic operator +:

expressions 𝑒 ∶∶= 𝑣 ∣ uop 𝑒1 ∣ 𝑒1 bop 𝑒2
values 𝑣 ∶∶= 𝑛

unary operators uop ∶∶= -
binary operators bop ∶∶= +

numbers 𝑛

trait Expr // e
trait Uop // uop
trait Bop // bop

222

case class Unary(uop: Uop, e1: Expr) extends Expr // e ::= uop e1
case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr // e ::= e1 bop e2

case class N(n: Double) extends Expr // e ::= n
case object Neg extends Uop // uop ::= -
case object Plus extends Bop // bop ::= +

def isValue(e: Expr): Boolean = e match {
case N(_) => true
case _ => false

}

val e_oneplustwoplusthreeplusfour = Binary(Plus, Binary(Plus, N(1), N(2)), Binary(Plus, N(3), N(4)))

defined trait Expr
defined trait Uop
defined trait Bop
defined class Unary
defined class Binary
defined class N
defined object Neg
defined object Plus
defined function isValue
e_oneplustwoplusthreeplusfour: Binary = Binary(
bop = Plus,
e1 = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0)),
e2 = Binary(bop = Plus, e1 = N(n = 3.0), e2 = N(n = 4.0))

)

Do Something

First, we need to describe what action does an operation perform. For example, we want to
say that the - operator negates a number and the + operator adds two numbers, respectively.
We say this with the following two rules:

DoNeg
𝑛′ = −𝑛1
-𝑛1 ⟶ 𝑛′

DoPlus
𝑛′ = 𝑛1 + 𝑛2
𝑛1 + 𝑛2 ⟶ 𝑛′

These rules say that the expression -𝑛1 and the expression 𝑛1 + 𝑛2 reduces in one step to an
integer value 𝑛′ that are the negation of a number 𝑛1 and the addition of the numbers 𝑛1

223

and 𝑛2, respectively. We use the meta-variables 𝑛1, 𝑛2, and 𝑛′ to express constraints that
particular positions in the expressions numeric values. Note that the in the conclusions are
the syntactic operators - and +, while the − and + in the premises express mathematical
negation of a number and addition of two numbers, respectively. As we discussed previously,
this symbol clash is rather unfortunate, but context usually allows us to determine which is
which. We sometimes call this kind of rule that performs an operation a local reduction rule.
We will prefix all rules for this kind of rule with Do (and so will sometimes call them Do
rules).

Note that the following way of writing DoNeg and DoPlus say the same thing:

DoNeg

-𝑛1 ⟶ −𝑛1

DoPlus

𝑛1 + 𝑛2 ⟶ 𝑛1 + 𝑛2

Observe the distinction between the syntactic operators - and + and the mathematical opera-
tions − and +.

Search for Something to Do

Second, we need to describe how we find the next operation to perform. These rules will
capture issues like evaluation order described informally above.

For - 𝑒1, the rule SearchNeg says, “If it is possible to take a step from 𝑒1 to 𝑒′
1, then - 𝑒1

steps to - 𝑒′
1.” That is, the next expression to reduce is somewhere in the sub-expression 𝑒1.

SearchNeg
𝑒1 ⟶ 𝑒′

1
- 𝑒1 ⟶ - 𝑒′

1

For 𝑒1 + 𝑒2, there are multiple ways we can define the next possible step. We could take a
step in on the left (i.e., 𝑒1) or on the right (i.e., 𝑒2). We could reduce 𝑒1 to a value before
continuing on to 𝑒2 (i.e., called left-to-right) or vice versa (i.e., called right-to-left), or we can
allow 𝑒1 and 𝑒2 to reduce concurrently.

To specify that 𝑒1 + 𝑒2 should be evaluated left-to-right, we use the following two rules:

SearchPlus1
𝑒1 ⟶ 𝑒′

1
𝑒1 + 𝑒2 ⟶ 𝑒′

1 + 𝑒2

SearchPlus2
𝑒2 ⟶ 𝑒′

2
𝑛1 + 𝑒2 ⟶ 𝑛1 + 𝑒′

2

224

The SearchPlus1 rule states for an arbitrary expression of the form 𝑒1 + 𝑒2, if 𝑒1 steps to 𝑒′
1,

then the whole expression steps to 𝑒′
1 + 𝑒2. We can view this rule as saying that we should look

for an operation to perform somewhere in 𝑒1. The rest of the expression •+𝑒2 is a context that
gets carried over untouched. The rule is similar except that it applies only if the left expression
is a value (i.e., 𝑛1 + 𝑒2). Together, these rules capture precisely a left-to-right evaluation order
for an expression of the form 𝑒1 + 𝑒2 because (1) if 𝑒1 is not a value, then only SearchPlus1
could possibly apply, and (2) if 𝑒1 is a number value, then only SearchPlus2 could possibly
apply. We sometimes call this kind of rule that finds the next operation to perform a global
reduction rule (or a Search rule). The sub-expression that is the next operation to perform is
called the redex (for reducible expression).

Observe that there is no rule for a number literal 𝑛. It is already a value, so there is no
reduction step.

Implementation

We translate these rules directly to an implementation:

def step(e: Expr): Expr = {
require(!isValue(e))
e match {

// DoNeg
case Unary(Neg, N(n1)) => N(-n1)
// SearchNeg
case Unary(Neg, e1) => Unary(Neg, step(e1))
// DoPlus
case Binary(Plus, N(n1), N(n2)) => N(n1 + n2)
// SearchPlus2
case Binary(Plus, N(n1), e2) => Binary(Plus, N(n1), step(e2))
// SearchPlus1
case Binary(Plus, e1, e2) => Binary(Plus, step(e1), e2)

}
}

defined function step

Observe that we do have to pay attention to the specificity of the pattern match and order
the // SearchPlus2 case before the // SearchPlus1 case. And if there is no matching case,
then we would get a MatchError exception.

225

A Test Case and a Step Judgment

We consider a test case to show evaluation order:

e_oneplustwoplusthreeplusfour
val e_step_oneplustwoplusthreeplus = step(e_oneplustwoplusthreeplusfour)

res2_0: Binary = Binary(
bop = Plus,
e1 = Binary(bop = Plus, e1 = N(n = 1.0), e2 = N(n = 2.0)),
e2 = Binary(bop = Plus, e1 = N(n = 3.0), e2 = N(n = 4.0))

)
e_step_oneplustwoplusthreeplus: Expr = Binary(
bop = Plus,
e1 = N(n = 3.0),
e2 = Binary(bop = Plus, e1 = N(n = 3.0), e2 = N(n = 4.0))

)

Calling step(e_oneplustwoplusthreeplusfour) corresponds to a witness of the judgment

(1 + 2) + (3 + 4) ⟶ 3 + (3 + 4)

Observe that we reduce the left side of the top-level +.

Let us instrument step to show a derivation:

def step(e: Expr): Expr = {
require(!isValue(e))
val e_ = e match {

// DoNeg
case Unary(Neg, N(n1)) => {
println("-- DoNeg")
N(-n1)

}
// SearchNeg
case Unary(Neg, e1) => {
println("-- SearchNeg")
Unary(Neg, step(e1))

}
// DoPlus
case Binary(Plus, N(n1), N(n2)) => {

226

println("-- DoPlus")
N(n1 + n2)

}
// SearchPlus2
case Binary(Plus, N(n1), e2) => {

val e2_ = step(e2)
println("-- SearchPlus2")
Binary(Plus, N(n1), e2_)

}
// SearchPlus1
case Binary(Plus, e1, e2) => {

val e1_ = step(e1)
println("-- SearchPlus1")
Binary(Plus, e1_, e2)

}
}
println(s"$e ---> $e_")
e_

}

step(e_oneplustwoplusthreeplusfour)

-- DoPlus
Binary(Plus,N(1.0),N(2.0)) ---> N(3.0)
-- SearchPlus1
Binary(Plus,Binary(Plus,N(1.0),N(2.0)),Binary(Plus,N(3.0),N(4.0))) ---> Binary(Plus,N(3.0),Binary(Plus,N(3.0),N(4.0)))

defined function step
res3_1: Expr = Binary(
bop = Plus,
e1 = N(n = 3.0),
e2 = Binary(bop = Plus, e1 = N(n = 3.0), e2 = N(n = 4.0))

)

Observe that the derivation is simply to find which sub-expression to apply a single Do rule.

Meta-Theory

Considering these rules, there is at most one rule that applies that specifies the “next” step. If
our set of inference rules defining reduction has this property, then we say that our reduction

227

system is deterministic. In other words, there is always at most one “next” step. Determinism
is a property that we could prove about certain reduction systems, which we can state formally
as follows:

Proposition 21.1 (Determinism). If 𝑒 ⟶ 𝑒′ and 𝑒 ⟶ 𝑒″, then 𝑒′ = 𝑒″.

In general, such a proof would proceed by structural induction on the derivation of the reduc-
tion step (i.e., 𝑒 ⟶ 𝑒′). We do not consider such proofs in detail(cf., ?@sec-induction-on-
derivations).

21.3 Dynamic Typing

Let us add boolean values to our JavaScripty variant:

values 𝑣 ∶∶= 𝑏
booleans 𝑏

case class B(b: Boolean) extends Expr // e ::= b

def isValue(e: Expr): Boolean = e match {
case N(_) | B(_) => true
case _ => false

}

val e_true = B(true)
val e_trueplustwo = Binary(Plus, e_true, N(2))

defined class B
defined function isValue
e_true: B = B(b = true)
e_trueplustwo: Binary = Binary(bop = Plus, e1 = B(b = true), e2 = N(n = 2.0))

Since we only add boolean literals that are values, there are no additional rules we need for
𝑒 ⟶ 𝑒′.

def step(e: Expr): Expr = {
require(!isValue(e), s"$e should not be a value")
e match {

// DoPlus
case Binary(Plus, N(n1), N(n2)) => N(n1 + n2)

228

// SearchPlus2
case Binary(Plus, N(n1), e2) => Binary(Plus, N(n1), step(e2))
// SearchPlus1
case Binary(Plus, e1, e2) => Binary(Plus, step(e1), e2)

}
}

defined function step

As expected with the expression true + 2, we run into undefined behavior with these rules,
which manifests haphazardly in our implementation as failing the require(!isValue(e)):

e_trueplustwo
val v_trueplustwo = step(e_trueplustwo)

Our implicit intent is that a type error is where we are stuck—that is, there is no next step
and the expression 𝑒 is not a value. But what if we are stuck because we have a bug in our
rules? We want to explicit about when there is a dynamic type error (i.e., there is a bug in the
object program that the programmer gave us) versus a bug in our semantic rules. Previously,
we did so informally in implementation with throw DynamicTypeError(e) (cf. Section 18.3),
but that relies on the exception semantics of the Scala meta-language that was not explicitly
described in our semantics specification. We wish to also define precisely the sub-expression e
that is to blame.

Let us introduce a step-result type

step-results 𝑟 ∶∶= typeerror 𝑒 ∣ 𝑒′

to make explicit that step can return a type-error result. Specifically, a step-result is either a
typeerror 𝑒 with the expression 𝑒 to blame or a one-step reduced expression 𝑒′.

case class DynamicTypeError(e: Expr) // typeerror e
type Result = Either[DynamicTypeError, Expr] // r ::= typeerror e | e

defined class DynamicTypeError
defined type Result

We have chosen to represent a step-result 𝑟 in Scala as an Either[DynamicTypeError, Expr].

We now consider the judgment form 𝑒 ⟶ 𝑟 that says, “Expression 𝑒 takes a step to a result
𝑟.” with the intention that step: Expr => Result is a total function:

229

def step(e: Expr): Result = ???

defined function step

We add rules that explicitly state when we step to a typeerror:

DoNeg

-𝑛1 ⟶ −𝑛1

TypeErrorNeg
𝑣1 ≠ 𝑛1

- 𝑣1 ⟶ typeerror(- 𝑣1)

SearchNeg
𝑒1 ⟶ 𝑒′

1
- 𝑒1 ⟶ - 𝑒′

1

DoPlus

𝑛1 + 𝑛2 ⟶ 𝑛1 + 𝑛2

TypeErrorPlus2
𝑣2 ≠ 𝑛2

𝑛1 + 𝑣2 ⟶ typeerror(𝑛1 + 𝑣2)

SearchPlus2
𝑒2 ⟶ 𝑒′

2
𝑛1 + 𝑒2 ⟶ 𝑛1 + 𝑒′

2

TypeErrorPlus1
𝑣1 ≠ 𝑛1

𝑣1 + 𝑒2 ⟶ typeerror(𝑣1 + 𝑒2)

SearchPlus1
𝑒1 ⟶ 𝑒′

1
𝑒1 + 𝑒2 ⟶ 𝑒′

1 + 𝑒2

def step(e: Expr): Either[DynamicTypeError, Expr] = {
require(!isValue(e))
e match {

// DoNeg
case Unary(Neg, N(n1)) => Right(N(-n1))
// TypeErrorNeg
case Unary(Neg, v1) if isValue(v1) => Left(DynamicTypeError(e))
case Unary(Neg, e1) => step(e1) match {
// SearchNeg
case Right(e1) => Right(Unary(Neg, e1))
// PropagateNeg
case Left(error) => Left(error)

}
case Binary(Plus, N(n1), v2) if isValue(v2) => v2 match {
// DoPlus
case N(n2) => Right(N(n1 + n2))
// TypeErrorPlus2
case _ => Left(DynamicTypeError(e))

}
case Binary(Plus, v1, e2) if isValue(v1) => v1 match {

case N(n1) => step(e2) match {

230

// SearchPlus2
case Right(e2) => Right(Binary(Plus, N(n1), e2))
// PropagatePlus2
case Left(error) => Left(error)

}
// TypeErrorPlus1
case _ => Left(DynamicTypeError(e))

}
case Binary(Plus, e1, e2) => step(e1) match {
// SearchPlus1
case Right(e1) => Right(Binary(Plus, e1, e2))
// PropagatePlus1
case Left(error) => Left(error)

}
}

}

defined function step

e_trueplustwo
val v_trueplustwo = step(e_trueplustwo)

From the implementation, we discover that there are three more cases, that is,

case Left(error) => Left(error)

cases to make step: Expr => Either[DynamicTypeError, Expr] a total function. In those
cases, we encountered a typeerror in a sub-expression from recursively calling step, and we
simply want to propagate the DynamicTypeError:

PropagateNeg
𝑒1 ⟶ typeerror 𝑒
- 𝑒1 ⟶ typeerror 𝑒

PropagatePlus2
𝑒2 ⟶ typeerror 𝑒

𝑛1 + 𝑒2 ⟶ typeerror 𝑒

PropagatePlus1
𝑒1 ⟶ typeerror 𝑒

𝑒1 + 𝑒2 ⟶ typeerror 𝑒

Either.map

Recall that the Either[Err, A] type is often used like an Option[A] type, except that the
“bad” case has some data payload (i.e., the None case for an Option[A] corresponds to the
Left(err) case for an Either[Err, A]). This “propagate error” pattern is so common that

231

the the Either[Err, A] type has a higher-order method map that takes a callback for what
transformation to make with the Right case and otherwise propagate the Left case.

Thus, we can refactor the step implementation from above as follows:

def step(e: Expr): Either[DynamicTypeError, Expr] = {
require(!isValue(e))
e match {

// DoNeg
case Unary(Neg, N(n1)) => Right(N(-n1))
// TypeErrorNeg
case Unary(Neg, v1) if isValue(v1) => Left(DynamicTypeError(e))
// SearchNeg and PropagateNeg
case Unary(Neg, e1) => step(e1) map { e1 => Unary(Neg, e1) }
case Binary(Plus, N(n1), v2) if isValue(v2) => v2 match {
// DoPlus
case N(n2) => Right(N(n1 + n2))
// TypeErrorPlus2
case _ => Left(DynamicTypeError(e))

}
case Binary(Plus, v1, e2) if isValue(v1) => v1 match {
// SearchPlus2 and PropagatePlus2
case N(n1) => step(e2) map { e2 => Binary(Plus, N(n1), e2) }
// TypeErrorPlus1
case _ => Left(DynamicTypeError(e))

}
// SearchPlus1 and PropagatePlus1
case Binary(Plus, e1, e2) => step(e1) map { e1 => Binary(Plus, e1, e2) }

}
}

defined function step

Note that the map method is common for both Either[Err, A] and Option[A]:

None map { (i: Int) => i + 1 }
Some(3) map { (i: Int) => i + 1 }

res12_0: Option[Int] = None
res12_1: Option[Int] = Some(value = 4)

232

21.4 Generic Evaluation Order

Let us add the boolean expressions for conditionals, !, &&, ||, and ===:

expressions 𝑒 ∶∶= 𝑒1 ? 𝑒2 : 𝑒3
unary operators uop ∶∶= !
binary operators bop ∶∶= && ∣ || ∣ ===

case class If(e1: Expr, e2: Expr, e3: Expr) extends Expr // e ::= e1 ? e2 : e3

case object Not extends Uop // uop ::= !
case object And extends Bop // bop ::= &&
case object Or extends Bop // bop ::= ||

case object Eq extends Bop // bop ::= ===

defined class If
defined object Not
defined object And
defined object Or
defined object Eq

Our first observation is that evaluation order is a concern regardless of the type of operations.
Suppose we define that all binary operators are evaluated left-to-right, then we can replace
the rules SearchNeg, SearchPlus1, and SearchPlus2 with these more generic versions:

SearchUnary
𝑒1 ⟶ 𝑒′

1
uop 𝑒1 ⟶ uop 𝑒′

1

SearchBinary1
𝑒1 ⟶ 𝑒′

1
𝑒1 bop 𝑒2 ⟶ 𝑒′

1 bop 𝑒2

SearchBinary2
𝑒2 ⟶ 𝑒′

2
𝑣1 bop 𝑒2 ⟶ 𝑣1 bop 𝑒′

2

The same makes sense for the rules that propagate type error, replacing PropagateNeg,
PropagatePlus1, and PropagatePlus2 with the following:

PropagateUnary
𝑒1 ⟶ typeerror 𝑒

uop 𝑒1 ⟶ typeerror 𝑒

PropagateBinary1
𝑒1 ⟶ typeerror 𝑒

𝑒1 bop 𝑒2 ⟶ typeerror 𝑒

PropagateBinary2
𝑒2 ⟶ typeerror 𝑒

𝑣1 bop 𝑒2 ⟶ typeerror 𝑒

233

21.5 Non-Determinism

Consider the relationship between the SearchBinary1 and SearchBinary2 rules that define
generically for all binary operators bop a left-to-right evaluation order and dynamic typing.

TypeErrorPlus1
𝑣1 ≠ 𝑛1

𝑣1 + 𝑒2 ⟶ typeerror(𝑣1 + 𝑒2)

SearchPlus2
𝑒2 ⟶ 𝑒′

2
𝑛1 + 𝑒2 ⟶ 𝑛1 + 𝑒′

2

In the rules above, the TypeErrorPlus1 rule and the SearchPlus2 are disjoint (i.e., one
rule applies to determine the next step) for an expression of the form 𝑣1 + 𝑒2. However, if
we replace SearchPlus2 with SearchBinary2, that is no longer the case. That is, our step
relation 𝑒 ⟶ 𝑟 is no longer deterministic, or we say that it has non-determinism.

What this means from an implementation standpoint is that while the semantics speci-
fication with SearchPlus2 states that an implementation must step to a typeerror using
TypeErrorPlus1 before taking a step 𝑒2. The pair of rules TypeErrorPlus1 and
SearchBinary2 are not disjoint, so an implementation may choose to take some steps in 𝑒2
using SearchBinary2 before stepping to a typeerror using TypeErrorPlus1. The implemen-
tation that steps to a typeerror as soon as possible is still valid but other implementations are
now permitted.

21.6 Short-Circuiting Evaluation

Let us define the semantics of the core boolean expressions as in JavaScript. The DoNot rule
converts value 𝑣1 into a boolean and returns its negation:

DoNot
𝑣1 ⇝ 𝑏1

! 𝑣1 ⟶ ¬𝑏1

What we have seen already is that the && and || operators do not behave like mathematical
logic operators ∧ and ∨ (whereas ! does behave like ¬ after coercion):

DoAndTrue
𝑣1 ⇝ true

𝑣1 && 𝑒2 ⟶ 𝑒2

DoAndFalse
𝑣1 ⇝ false

𝑣1 && 𝑒2 ⟶ 𝑣1

234

DoOrTrue
𝑣1 ⇝ true

𝑣1 || 𝑒2 ⟶ 𝑣1

DoOrFalse
𝑣1 ⇝ false

𝑣1 || 𝑒2 ⟶ 𝑒2

For the && and || operators, given that binary operators evaluate left-to-right, once we have
evaluated 𝑒1 to a value, we do not necessarily need to evaluate 𝑒2. That is, we may short-
circuit evaluating 𝑒2. We say that a short-circuiting evaluation of an expression is one where a
value is produced before evaluating all sub-expressions to values. We say that the expressions
𝑒1 && 𝑒2 and 𝑒1 || 𝑒2 may short-circuit. In particular, the DoAndFalse rule says that 𝑣1 && 𝑒2
where 𝑣1 converts to false evaluates to 𝑣1 without ever evaluating 𝑒2. The analgous rule for
|| is DoOrTrue.

For 𝑒1 ? 𝑒2 : 𝑒3, the rules DoIfTrue and DoIfFalse specify with which expression to con-
tinue evaluation in the expected way depending on what boolean value to which the guard
converts:

DoIfTrue
𝑣1 ⇝ true

𝑣1 ? 𝑒2 : 𝑒3 ⟶ 𝑒2

DoIfFalse
𝑣1 ⇝ false

𝑣1 ? 𝑒2 : 𝑒3 ⟶ 𝑒3

Observe how similar DoAndTrue and DoOrFalse are to DoIfTrue and DoIfFalse, respec-
tively. We see that && and || operators have quite a bit similarity to control-flow operators
like 𝑒1 ? 𝑒2 : 𝑒3 and significant differences compared to the mathematical logic operators ∧
and ∨, respectively.

Many programming languages implement short-circuiting boolean operators && and ||.

Searching for a redex in && and || are covered by SearchBinary1 and SearchBinary2. For
𝑒1 ? 𝑒2 : 𝑒3, we need a SearchIf rule to reduce the guard expression 𝑒1 to a value:

SearchIf
𝑒1 ⟶ 𝑒′

1
𝑒1 ? 𝑒2 : 𝑒3 ⟶ 𝑒′

1 ? 𝑒2 : 𝑒3

and propagating typeerror as needed:

PropagateIf
𝑒1 ⟶ typeerror 𝑒

𝑒1 ? 𝑒2 : 𝑒3 ⟶ typeerror 𝑒

235

21.7 Polymorphism

The === operator does not perform coercions but is still polymorphic, that is, it applies regard-
less of the type of value of its arguments:

DoEquality

𝑣1 === 𝑣2 ⟶ 𝑣1 = 𝑣2

We observe that 𝑣1 = 𝑣2 is false if the types of 𝑣1 and 𝑣2 do not match. In JavaScript, this is
called strict equality, as it has another operator == that performs coercions before comparing
for equality called loose equality.

21.8 Recursion

Let us consider our object language JavaScripty with variables, binding, and optionally-named
functions:

values 𝑣 ∶∶= 𝑥 ∣ 𝑥?(𝑦) => 𝑒1
expressions 𝑒 ∶∶= const 𝑥 = 𝑒1; 𝑒2 ∣ 𝑒1(𝑒2)

optional variables 𝑥? ∶∶= 𝑥 ∣ 𝜀
variables 𝑥

To call a function within itself, we permit functions to have a variable identifier to refer to
itself. If the identifier is present, then it can be used for recursion.

case class Var(x: String) extends Expr // e ::= x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // e ::= const x = e1; e2
case class Fun(xopt: Option[String], y: String, e1: Expr) extends Expr // e ::= x?(y) => e1
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

def isValue(e: Expr): Boolean = e match {
case N(_) | B(_) | Fun(_, _, _) => true
case _ => false

}

defined class Var
defined class ConstDecl
defined class Fun
defined class Call
defined function isValue

236

For exmaple, here is an abstract syntax tree for a recursive function silly:

val e_sillyRecFun = Fun(Some("silly"), "i",
If(Binary(Eq, Var("i"), N(0)),

Var("j"),
Binary(Plus,

Var("j"),
Call(Var("silly"), Binary(Plus, Var("i"), Unary(Neg, N(1)))))))

e_sillyRecFun: Fun = Fun(
xopt = Some(value = "silly"),
y = "i",
e1 = If(

e1 = Binary(bop = Eq, e1 = Var(x = "i"), e2 = N(n = 0.0)),
e2 = Var(x = "j"),
e3 = Binary(
bop = Plus,
e1 = Var(x = "j"),
e2 = Call(

e1 = Var(x = "silly"),
e2 = Binary(
bop = Plus,
e1 = Var(x = "i"),
e2 = Unary(uop = Neg, e1 = N(n = 1.0))

)
)

)
)

)

corresponding to the concrete syntax:

function silly(i) { return i === 0 ? j : j + silly(i + -1); }

Recall accidental “dynamic scoping” (cf. Chapter 19). We lazily wait until seeing a variable use
to determine the variable binding site. The “bug” comes from using the “wrong” environment.
A possible fix is to save the “right” environment with the function value—what’s known as
closure.

A brute force alternative is to always work with closed expressions (i.e., expressions that have
no free variable uses). As soon as we know the variable binding, we eagerly “get rid” of
variable uses with substitution. We see that the definition of the set of free variables uses of
an expression defines the binding site and scope of a variable:

237

def freeVars(e: Expr): Set[String] = e match {
case N(_) | B(_) => Set.empty
case Unary(_, e1) => freeVars(e1)
case Binary(_, e1, e2) => freeVars(e1) union freeVars(e2)
case If(e1, e2, e3) => freeVars(e1) union freeVars(e2) union freeVars(e3)
case Var(x) => Set(x)
case ConstDecl(x, e1, e2) => freeVars(e1) union (freeVars(e2) - x)
case Fun(xopt, y, e1) => freeVars(e1) -- xopt - y
case Call(e1, e2) => freeVars(e1) union freeVars(e2)

}

def closed(e: Expr): Boolean = freeVars(e).isEmpty

freeVars(e_sillyRecFun)
closed(e_sillyRecFun)

defined function freeVars
defined function closed
res16_2: Set[String] = Set("j")
res16_3: Boolean = false

Thus, the step function expects input expressions that are closed, non-value expressions:

def step(e: Expr): Either[DynamicTypeError, Expr] = {
require(closed(e), s"$e should be closed")
require(!isValue(e), s"$e should not be a value")
???

}

step(e_sillyRecFun)

Correspondingly, there is no DoVar rule for the judgment form 𝑒 ⟶ 𝑟 because 𝑒 must be
closed (cf. there is no EvalVar rule in Section 19.4).

The DoConstDecl rule for the variable binding expression const 𝑥 = 𝑒1; 𝑒2 eagerly applies
substitution to eliminate free-variable uses:

DoConstDecl

const 𝑥 = 𝑣1; 𝑒2 ⟶ [𝑣1/𝑥]𝑒2

238

The expression-to-be-bound should already be a value 𝑣1. We then proceed to 𝑒2 with the value
𝑣1 replacing the variable 𝑥. In general, the notation [𝑒1/𝑥]𝑒2 is read as the capture-avoiding
substitution of expression 𝑒1 for variable 𝑥 in 𝑒2.

We then need a SearchConstDecl rule to step 𝑒1 to a value in a const 𝑥 = 𝑒1; 𝑒2 expression:

SearchConstDecl
𝑒1 ⟶ 𝑒′

1
const 𝑥 = 𝑒1; 𝑒2 ⟶ const 𝑥 = 𝑒′

1; 𝑒2

PropagateConstDecl
𝑒1 ⟶ typeerror 𝑒

const 𝑥 = 𝑒1; 𝑒2 ⟶ typeerror 𝑒

We have two cases for reducing a function call 𝑒1(𝑒2), depending on whether the function is
named or not:

DoCall

((𝑥) => 𝑒1)(𝑣2) ⟶ [𝑣2/𝑥]𝑒1

DoCallRec
𝑣1 = (𝑥1(𝑥2) => 𝑒1)

𝑣1(𝑣2) ⟶ [𝑣1/𝑥1][𝑣2/𝑥2]𝑒1

If it is unnamed, the DoCall rule applies binding the actual argument 𝑣2 to the formal
parameter 𝑥 by substituting 𝑣2 for free variable uses 𝑥 in 𝑒1. If it named, then are two formal
parameters 𝑥1 and 𝑥2 where 𝑥1 is bound to the function value itself 𝑣1 and 𝑥2 is bound to the
actual argument 𝑣2. In this case, the DoCallRec rule applies by stepping to [𝑣1/𝑥1][𝑣2/𝑥2]𝑒1.
The DoCallRec shows the essence of recursion—a self-reference to the function value itself!

If 𝑣1 in the function call expression 𝑣1(𝑒2) is not a function value, then we have dynamic type
error:

TypeErrorCall
𝑣1 ≠ 𝑥?(𝑦) => 𝑒1

𝑣1(𝑒2) ⟶ typeerror(𝑣1(𝑒2))

Observe that we step to a typeerror only when 𝑣1(𝑣2). That is, we follow JavaScript here in
delaying the check for a dynamic type error until both the function position and the argument
position are values.

We define evaluating function call 𝑒1(𝑒2) as left-to-right and continuing even if 𝑒1 reduces to
a non-function value:

SearchCall1
𝑒1 ⟶ 𝑒′

1
𝑒1(𝑒2) ⟶ 𝑒′

1(𝑒2)

SearchCall2
𝑒2 ⟶ 𝑒′

2
𝑣1(𝑒2) ⟶ 𝑣1(𝑒′

2)

239

PropagateCall1
𝑒1 ⟶ typeerror 𝑒

𝑒1(𝑒2) ⟶ typeerror 𝑒

PropagateCall2
𝑒2 ⟶ typeerror 𝑒

𝑣1(𝑒2) ⟶ typeerror 𝑒

21.9 Substitution

The term capture-avoiding subsitution means that for [𝑒1/𝑥]𝑒2, we get the expression that is
like 𝑒2, but we have replaced all instances of variable 𝑥 with 𝑒1 while carefully respecting static
scoping (cf., Chapter 14). There are two thorny issues that arise.

Shadowing The substitution
[2⏟
𝑒1

/ a⏟
𝑥
] (const a = 1; a + b)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑒2

should yield (const a = 1; a + b). That is, only free instances of 𝑥 in 𝑒2 should be
replaced.

Free Variable Capture The substutition

[(a + 2)⏟
𝑒1

/ b⏟
𝑥
] (const a = 1; a + b)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑒2

should yield something like (const c = 1; c + (a + 2)). In particular, the following
result is wrong:

(const a = 1; a + (a + 2))
because the free variable a in 𝑒1 gets “captured” by the const binding of a.

In both cases, the issues could be resolved by renaming all bound variables in 𝑒2 so that there
are no name conflicts with free variables in 𝑒1 or 𝑥. In other words, it is clear what to do if 𝑒2
were instead

const c = 1; c + b

in which case simple textual substitution would suffice.

The observation is that renaming bound variables should preserve the meaning of the expression,
that is, the following two expressions are somehow equivalent:

(const a = 1; a) ≡𝛼 (const b = 1; b)

For historical reasons, this equivalence is known 𝛼-equivalence, and the process of renaming
bound variables is called 𝛼-renaming (cf. Section 14.7).

In rules DoConstDecl, DoCall, and DoCallRec, our situation is more restricted than the
general case discussed above. In particular, the substitution is of the form [𝑣/𝑥]𝑒 where the
replacement for 𝑣 has to be a value with no free variables, so only the shadowing issue arises.

240

[𝑒′/𝑥]𝑦 def= 𝑒′ if 𝑥 = 𝑦
[𝑒′/𝑥]𝑦 def= 𝑦 if 𝑥 ≠ 𝑦

[𝑒′/𝑥](const 𝑦 = 𝑒1; 𝑒2) def= const 𝑦 = ([𝑒′/𝑥]𝑒1); 𝑒2 if 𝑥 = 𝑦
[𝑒′/𝑥](const 𝑦 = 𝑒1; 𝑒2) def= const 𝑦 = ([𝑒′/𝑥]𝑒1); ([𝑒′/𝑥]𝑒2) if 𝑥 ≠ 𝑦

[𝑒′/𝑥]((𝑦) => 𝑒1) def= (𝑦) => 𝑒1 if 𝑥 = 𝑦
[𝑒′/𝑥]((𝑦) => 𝑒1) def= (𝑦) => ([𝑒′/𝑥]𝑒1) if 𝑥 ≠ 𝑦

[𝑒′/𝑥](𝑦1(𝑦2) => 𝑒1) def= 𝑦1(𝑦2) => 𝑒1 if 𝑥 = 𝑦1 or 𝑥 = 𝑦2
[𝑒′/𝑥](𝑦1(𝑦2) => 𝑒1) def= 𝑦1(𝑦2) => ([𝑒′/𝑥]𝑒1) if 𝑥 ≠ 𝑦1 and 𝑥 ≠ 𝑦2

[𝑒′/𝑥]𝑛 def= 𝑛
[𝑒′/𝑥]𝑏 def= 𝑏

[𝑒′/𝑥](uop 𝑒1) def= uop([𝑒′/𝑥]𝑒1)
[𝑒′/𝑥](𝑒1 bop 𝑒2) def= ([𝑒′/𝑥]𝑒1) bop ([𝑒′/𝑥]𝑒2)

[𝑒′/𝑥](𝑒1 ? 𝑒2 : 𝑒3) def= [𝑒′/𝑥]𝑒1 ? [𝑒′/𝑥]𝑒2 : [𝑒′/𝑥]𝑒3
[𝑒′/𝑥](𝑒1(𝑒2)) def= ([𝑒′/𝑥]𝑒1)([𝑒′/𝑥]𝑒2)

Figure 21.1: Defining substitution assuming 𝑒 and 𝑒′ use disjoint sets of bound variables.

In Figure 21.1, we define substitution [𝑒′/𝑥]𝑒 by induction over the structure of expression 𝑒.
As a pre-condition, we assume that 𝑒 and 𝑒′ use disjoint sets of bound variables. This pre-
condition can always be satisfied by renaming bound variables in 𝑒 appropriately as described
above. Or if we require that 𝑒′ has to be a closed expression, then this pre-condition is trivally
satisfied. The most interesting cases are for variable uses and bindings. For variable uses,
we yield 𝑒′ if the variable matches the variable being substituted for; otherwise, we leave the
variable use unchanged. For a const-binding const 𝑦 = 𝑒1; 𝑒2, we recall that the scope of 𝑥1 is
𝑒2, so we substitute in 𝑒2 depending on whether or not 𝑥 = 𝑦. Observe that the same reasoning
applies to function literals 𝑥?(𝑦) => 𝑒1. The remaining expression forms simply “pass through”
the substitution.

def substitute(with_e: Expr, x: String, in_e: Expr) = {
require((freeVars(with_e) intersect freeVars(in_e)).isEmpty)
def subst(in_e: Expr): Expr = in_e match {

case Var(y) => if (x == y) with_e else in_e
case ConstDecl(y, e1, e2) =>

if (x == y) ConstDecl(y, subst(e1), e2) else ConstDecl(y, subst(e1), subst(e2))
case Fun(yopt, y, e1) =>

if (Some(x) == yopt || x == y) in_e else Fun(yopt, y, subst(e1))
case N(_) | B(_) => in_e

241

case Unary(uop, e1) => Unary(uop, subst(e1))
case Binary(bop, e1, e2) => Binary(bop, subst(e1), subst(e2))
case If(e1, e2, e3) => If(subst(e1), subst(e2), subst(e3))
case Call(e1, e2) => Call(subst(e1), subst(e2))

}
subst(in_e)

}

defined function substitute

def toBoolean(e: Expr): Boolean = {
require(isValue(e))
e match {

case B(b) => b
case N(n) if (n compare 0.0) == 0 || (n compare -0.0) == 0 || n.isNaN => false
case _ => true

}
}

def step(e: Expr) = {
require(closed(e), s"$e should be closed")
def step(e: Expr): Either[DynamicTypeError, Expr] = {

require(!isValue(e), s"$e should not be a value")
e match {
// DoNeg
case Unary(Neg, N(n1)) => Right(N(-n1))
// DoPlus
case Binary(Plus, N(n1), N(n2)) => Right(N(n1 + n2))

// DoNot
case Unary(Not, v1) if isValue(v1) => Right(B(toBoolean(v1)))
// DoAndTrue and DoAndFalse
case Binary(And, v1, e2) if isValue(v1) => Right(if (toBoolean(v1)) e2 else v1)
// DoOrTrue and DoOrFalse
case Binary(Or, v1, e2) if isValue(v1) => Right(if (toBoolean(v1)) v1 else e2)
// DoIf
case If(v1, e2, e3) if isValue(v1) => Right(if (toBoolean(v1)) e2 else e3)
// DoEquality
case Binary(Eq, v1, v2) if isValue(v1) && isValue(v2) => Right(B(v1 == v2))

// DoConstDecl

242

case ConstDecl(x, v1, e2) if isValue(v1) => Right(substitute(v1, x, e2))
// DoCall and DoCallRec
case Call(v1 @ Fun(xopt, y, e1), v2) if isValue(v2) => {

val e1_ = substitute(v2, y, e1)
Right(xopt match {

case None => e1_
case Some(x) => substitute(v1, x, e1_)

})
}

// SearchUnary and PropagateUnary
case Unary(uop, e1) => step(e1) map { e1 => Unary(uop, e1) }
// SearchBinary2 and PropagateBinary2
case Binary(bop, v1, e2) if isValue(v1) => step(e2) map { e2 => Binary(bop, v1, e2) }
// SearchBinary1 and PropagateBinary1
case Binary(bop, e1, e2) => step(e1) map { e1 => Binary(bop, e1, e2) }

// SearchIf and PropagateIf
case If(e1, e2, e3) => step(e1) map { e1 => If(e1, e2, e3) }

// SearchConstDecl and PropagateConstDecl
case ConstDecl(x, e1, e2) => step(e1) map { e1 => ConstDecl(x, e1, e2) }

// SearchCall2 and PropagateCall2
case Call(v1, e2) if isValue(v1) => step(e2) map { e2 => Call(v1, e2) }

// TypeErrorNeg
case Unary(Neg, v1) if isValue(v1) => Left(DynamicTypeError(e))
// TypeErrorPlus1
case Binary(Plus, v1, _) if isValue(v1) => Left(DynamicTypeError(e))
// TypeErrorPlus2
case Binary(Plus, _, v2) if isValue(v2) => Left(DynamicTypeError(e))
// TypeErrorCall
case Call(v1, _) if isValue(v1) => Left(DynamicTypeError(e))

// Anything else is an implementation bug
}

}
step(e)

}

val e_closedSillyRecFun = ConstDecl("j", N(1), Call(e_sillyRecFun, N(3)))

243

val Right(e_oneStepClosedSillyRecFun) = step(e_closedSillyRecFun)
val Right(e_twoStepsClosedSillyRecFun) = step(e_oneStepClosedSillyRecFun)

defined function toBoolean
defined function step
e_closedSillyRecFun: ConstDecl = ConstDecl(
x = "j",
e1 = N(n = 1.0),
e2 = Call(

e1 = Fun(
xopt = Some(value = "silly"),
y = "i",
e1 = If(

e1 = Binary(bop = Eq, e1 = Var(x = "i"), e2 = N(n = 0.0)),
e2 = Var(x = "j"),
e3 = Binary(
bop = Plus,
e1 = Var(x = "j"),
e2 = Call(

e1 = Var(x = "silly"),
e2 = Binary(
bop = Plus,
e1 = Var(x = "i"),
e2 = Unary(uop = Neg, e1 = N(n = 1.0))

)
)

)
)

),
e2 = N(n = 3.0)

)
)
e_oneStepClosedSillyRecFun: Expr = Call(
e1 = Fun(

xopt = Some(value = "silly"),
y = "i",
e1 = If(
e1 = Binary(bop = Eq, e1 = Var(x = "i"), e2 = N(n = 0.0)),
e2 = N(n = 1.0),
e3 = Binary(

bop = Plus,
e1 = N(n = 1.0),

244

e2 = Call(
e1 = Var(x = "silly"),
e2 = Binary(

bop = Plus,
e1 = Var(x = "i"),
e2 = Unary(uop = Neg, e1 = N(n = 1.0))

)
)

)
)

),
e2 = N(n = 3.0)

)
e_twoStepsClosedSillyRecFun: Expr = If(
e1 = Binary(bop = Eq, e1 = N(n = 3.0), e2 = N(n = 0.0)),
e2 = N(n = 1.0),
e3 = Binary(

bop = Plus,
e1 = N(n = 1.0),
e2 = Call(
e1 = Fun(

xopt = Some(value = "silly"),
y = "i",
e1 = If(
e1 = Binary(bop = Eq, e1 = Var(x = "i"), e2 = N(n = 0.0)),
e2 = N(n = 1.0),
e3 = Binary(

bop = Plus,
e1 = N(n = 1.0),
e2 = Call(
e1 = Var(x = "silly"),
e2 = Binary(

bop = Plus,
e1 = Var(x = "i"),
e2 = Unary(uop = Neg, e1 = N(n = 1.0))

)
)

)
)

),
e2 = Binary(

bop = Plus,
e1 = N(n = 3.0),

245

e2 = Unary(uop = Neg, e1 = N(n = 1.0))
)

)
)

)

21.10 Multi-Step Reduction

We have now defined how to take one-step of evaluation (without typeerror), namely a judgment
of the form 𝑒 ⟶ 𝑒′. The multi-step reduction judgment form

𝑒 ⟶∗ 𝑒′

says, “Expression 𝑒 can step to expression 𝑒′ in zero-or-more steps.” This judgment is defined
using the following two rules:

𝑒 ⟶∗ 𝑒′
MultiStepZero

𝑒 ⟶∗ 𝑒

MultiStepAtLeastOne
𝑒 ⟶ 𝑒′ 𝑒′ ⟶∗ 𝑒″

𝑒 ⟶∗ 𝑒″

In other words, 𝑒 ⟶∗ 𝑒′ is the reflexive-transitive closure of 𝑒 ⟶ 𝑒′.

A property that we want is that our big-step semantics and our small-step semantics are “the
same.” We can state this property formally as follows:

Proposition 21.2 (Big-Step and Small-Step Equivalence). ⋅ ⊢ 𝑒 ⇓ 𝑣 if and only if 𝑒 ⟶∗ 𝑣.

The multi-step reduction judgment form 𝑒 ⟶∗ 𝑒′ enables us to state when an expression 𝑒′ is
reachable under some number of steps from 𝑒 (i.e., 𝑒 ⟶ ⋯).

At the same time, we have implicitly assumed that there is a top-level or outer loop that
repeatedly applies a step until reaching a value or typeerror. Let us a define a judgment for
𝑒 ↪ 𝑟 that says, “Evaluation 𝑒 reduces to a result 𝑟 that is either a value or a typeerror using
some number of steps.”

𝑒 ↪ 𝑟
ReducesToValue
𝑒 value
𝑒 ↪ 𝑒

ReducesToTypeError
𝑒 ⟶ typeerror 𝑒′

𝑒 ↪ typeerror 𝑒′

ReducesToStep
𝑒 ⟶ 𝑒′ 𝑒′ ↪ 𝑟

𝑒 ↪ 𝑟

And let us implement 𝑒 ↪ 𝑟 as follows with iterateStep:

246

def iterateStep(e: Expr): Either[DynamicTypeError, Expr] =
// ReducesToValue
if (isValue(e)) Right(e)
else step(e) match {

// ReducesToTypeError
case Left(error) => Left(error)
// ReducesToStep
case Right(e) => iterateStep(e)

}

defined function iterateStep

Note again the passthrough case Left(error) => Left(error). The Either[Err, A] type
has a method flatMap similar to the map method, except it permits its callback to also “fail.”
We can thus refactor iterateStep as follows using flatMap:

def iterateStep(e: Expr): Either[DynamicTypeError, Expr] =
// ReducesToValue
if (isValue(e)) Right(e)
// ReducesToTypeError and ReducesToStep
else step(e) flatMap iterateStep

defined function iterateStep

That is, if either step or iterateStep “fails” by returning a Left value, that Left will
be returned. Otherwise, the resulting Expr from a “successful” step(e) was passed to
iterateStep.

Let’s run an integration test for step from iterateStep:

iterateStep(e_closedSillyRecFun)

res22: Either[DynamicTypeError, Expr] = Right(value = N(n = 4.0))

One benefit of the small-step semantics is that we can easily log the intermediate steps of
reduction:

247

def iterateStep(e: Expr) = {
println(e)
def loop(e: Expr): Either[DynamicTypeError, Expr] =

// ReducesToValue
if (isValue(e)) Right(e)
// ReducesToTypeError and ReducesToStep
else step(e) flatMap { e => println(s"--> $e"); loop(e) }

loop(e)
}

iterateStep(e_closedSillyRecFun)

ConstDecl(j,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),Var(j),Binary(Plus,Var(j),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),N(3.0)))
--> Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),N(3.0))
--> If(Binary(Eq,N(3.0),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(3.0),Unary(Neg,N(1.0))))))
--> If(B(false),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(3.0),Unary(Neg,N(1.0))))))
--> Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(3.0),Unary(Neg,N(1.0)))))
--> Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(3.0),N(-1.0))))
--> Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),N(2.0)))
--> Binary(Plus,N(1.0),If(Binary(Eq,N(2.0),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(2.0),Unary(Neg,N(1.0)))))))
--> Binary(Plus,N(1.0),If(B(false),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(2.0),Unary(Neg,N(1.0)))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(2.0),Unary(Neg,N(1.0))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(2.0),N(-1.0)))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),N(1.0))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),If(Binary(Eq,N(1.0),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(1.0),Unary(Neg,N(1.0))))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),If(B(false),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(1.0),Unary(Neg,N(1.0))))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(1.0),Unary(Neg,N(1.0)))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(1.0),N(-1.0))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),N(0.0)))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Binary(Plus,N(1.0),If(Binary(Eq,N(0.0),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(0.0),Unary(Neg,N(1.0)))))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Binary(Plus,N(1.0),If(B(true),N(1.0),Binary(Plus,N(1.0),Call(Fun(Some(silly),i,If(Binary(Eq,Var(i),N(0.0)),N(1.0),Binary(Plus,N(1.0),Call(Var(silly),Binary(Plus,Var(i),Unary(Neg,N(1.0))))))),Binary(Plus,N(0.0),Unary(Neg,N(1.0)))))))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),Binary(Plus,N(1.0),N(1.0))))
--> Binary(Plus,N(1.0),Binary(Plus,N(1.0),N(2.0)))
--> Binary(Plus,N(1.0),N(3.0))
--> N(4.0)

defined function iterateStep
res23_1: Either[DynamicTypeError, Expr] = Right(value = N(n = 4.0))

JavaScripty: Variables, Numbers, Booleans, Functions, and Strings

248

22 Lab: Small-Step Operational Semantics

Learning Goals

The primary learning goals of this assignment are to build intuition for the following:

• the distinction between a big-step and a small-step operational semantics;
• evaluation order; and
• substitution and program transformation.

Functional Programming Skills Iteration. Introduction to higher-order functions.
Programming Language Ideas Semantics: evaluation order. Small-step operational seman-

tics. Substitution and program transformation.

Instructions

A version of project files for this lab resides in the public pppl-lab3 repository. Please follow
separate instructions to get a private clone of this repository for your work.

You will be replacing ??? or case _ => ??? in the Lab3.scala file with solutions to the
coding exercises described below.

Your lab will not be graded if it does not compile. You may check compilation with
your IDE, sbt compile, or with the “sbt compile” GitHub Action provided for you. Comment
out any code that does not compile or causes a failing assert. Put in ??? as needed to get
something that compiles without error.

You may add additional tests to the Lab3Spec.scala file. In the Lab3Spec.scala, there is
empty test class Lab3StudentSpec that you can use to separate your tests from the given tests
in the Lab3Spec class. You are also likely to edit Lab3.worksheet.sc for any scratch work.
You can also use Lab3.worksheet.js to write and experiment in a JavaScript file that you
can then parse into a JavaScripty AST (see Lab3.worksheet.sc).

If you like, you may use this notebook for experimentation. However, please make sure
your code is in Lab3.scala; code in this notebook will not graded.

Note that there is a section with concept exercises (Section 22.6). Make sure to complete the
concept exercises in that section and turn in this file as part of your submission for the

249

https://github.com/csci3155/pppl-lab3

concept exercises. However, all code and testing exercises from other sections are submitted
in Lab3.scala or Lab3Spec.scala.

Recall that you need to switch kernels between running JavaScript and Scala cells.

22.1 Small-Step Interpreter: JavaScripty Functions

We consider the same JavaScripty variant as in the previous exercise on big-step operational
semantics (Section 20.1) where the interesting language feature are first-class functions:

trait Expr
case class Fun(xopt: Option[String], y: String, e1: Expr) extends Expr // e ::= x?(y) => e1
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

defined trait Expr
defined class Fun
defined class Call

We consider a Fun constructor for representing JavaScripty function literals. This version of
Fun allows for named functions. When a function expression 𝑥(𝑦) => 𝑒′ has a name, then it
is can be recursive. As noted previously about recursive functions (Section 19.5), variable 𝑥
is an additional formal parameter, and the function body 𝑒′ may have free variable uses of 𝑥.
The variable 𝑥 gets bound to itself (i.e., the function value for 𝑥(𝑦) => 𝑒′) on a function call.

In the abstract syntax representation, the xopt: Option[String] parameter in our
Fun constructor is None if there is no identifier present (cannot be used recursively), or
Some(x: String) if there is an identifier, x, present (can be used recursively).

In this lab, we will do two things. First, we will move to implementing a small-step interpreter
with a function step that takes an e: Expr and returns a one-step reduction of e. A small-
step interpreter makes explicit the evaluation order of expressions. Second, we will remove
environments and instead use a language semantics based on substitution. This change will
result in static, lexical scoping without needing closures, thus demonstrating another way to
fix dynamical scoping.

These two changes are orthogonal, that is, one could implement a big-step interpreter using
substitution (as in Section 19.4) or a small-step interpreter using environments. Substitution
is a fairly simple way to get lexical scoping, but in practice, it is rarely used because it is not
the most efficient implementation.

250

22.2 Static Scoping

Exercise 22.1 (Substitute). Since our implementation requires substitution, we begin by
implementing substitute, which substitutes value v for all free occurrences of variable x in
expression e:

def substitute(e: Expr, v: Expr, x: String): Expr = ???

defined function substitute

We advise defining substitute by induction on e. The cases to be careful about are ConstDecl
and Fun because these are the variable binding constructs (as discussed in the reading on
substitution in Section 21.9). In particular, calling substitute on expression

a; { const a = 4; a }

with value 3 for variable a should return

3; { const a = 4; a }

not

3; { const a = 4; 3 }

This function is a helper for the step function, but you might want to implement all of the
cases of step that do not require substitute first.

22.3 Iteration

Our step performs a single reduction step. We may want to test it by repeatedly calling it
with an expression until reducing to value. Thus, from a software engineering standpoint, you
might want to evolve the iterate function described below together with your implementation
of step.

This idea of repeatedly performing an action until some condition is satisfied is a loop or
iteration. We have seen that we can iterate with a tail-recursive helper function. For example,
consider the sumTo function that sums the integers from 0 to n:

251

def sumTo(n: Int): Int = {
def loop(acc: Int, i: Int): Int = {

require(n >= 0)
if (i > n) acc
else loop(acc + i, i + 1)

}
loop(0, 0)

}
sumTo(100)

defined function sumTo
res2_1: Int = 5050

This pattern of repeating something until a condition is satisfied is exceedingly common (e.g.,
computing the square root using Newton-Raphson approximation until the error is small
enough from a previous assignment).

Because this pattern is so common, we want to get practice refactoring this pattern into a
library function. This library function will be a higher-order function because it takes the
“something” (i.e., what to do in each loop iteration) as a function parameter.

Exercise 22.2 (Iterate with Error Side-Effects). Implement the generic, higher-order library
function iterateBasic. The iterateBasic function repeatedly calls (i.e., iterates) the call-
back stepi until it returns None starting from acc0: A. Note that iterateBasic is generic in
the accumulation type A. The stepi callback takes the current accumulator of type A and the
iteration number as an Int and indicates continuing by returning Some(acc) for some next
accumulator value acc.

def iterateBasic[A](acc0: A)(stepi: (A, Int) => Option[A]): A = {
def loop(acc: A, i: Int): A = ???
loop(acc0, 0)

}

defined function iterateBasic

We can test iterateBasic by using it with a client like sumTo:

def sumTo(n: Int) = {
iterateBasic(0) { case (acc, i) =>

require(n >= 0)
if (i > n) None

252

else Some(acc + i)
}

}
sumTo(100)

We see how sumTo can use iterateBasic.

Exercise 22.3 (Iterate with Error Values). One unfortunate aspect of the above is that sumTo
“exits iterateBasic with an error” by throwing an exception (i.e., with the require(n >=
0)). Let us refactor iterateBasic to allow for explicit error values using Either[Err, A]:

def iterate[Err, A](acc0: A)(stepi: (A, Int) => Option[Either[Err, A]]): Either[Err, A] = {
def loop(acc: A, i: Int): Either[Err, A] = ???
loop(acc0, 0)

}

def sumTo(n: Int): Either[IllegalArgumentException, Int] = {
iterate(0) { case (acc, i) =>

if (n < 0) Some(Left(new IllegalArgumentException("requirement failed")))
else if (i > n) None
else Some(Right(acc + i))

}
}
sumTo(100)
sumTo(-1)

The iterate is now parametrized by an error type Err and returns an Either[Err, A]. The
stepi callback should return None if it wants to stop normally, Some(Left(err)) if it wants
to stop with an error, and Some(Right(acc) if it wants to continue with an accumulator value
acc.

We can now see how we can use iterate as a library function to iterate your step imple-
mentation. In particular, this is how iterate will be used to iterate step while adding some
debugging output:

def iterateStep(e: Expr) = {
require(closed(e), s"iterateStep: ${e} not closed")
if (debug) {

println("--")
println("Evaluating with step ...")

}
val v = iterate(e) { (e: Expr, n: Int) =>

253

if (debug) { println(s"Step $n: $e") }
if (isValue(e)) None else Some(step(e))

}
if (debug) { println("Value: " + v) }
v

}

Of particular interest is the anonymous function passed to iterate that calls your implemen-
tation of step.

22.4 Small-Step Interpreter

In this section, we implement the one-step evaluation judgment form 𝑒 ⟶ 𝑟 that says, “Ex-
pression 𝑒 can take one step of evaluation to a step-result 𝑟.”

step-results 𝑟 ∶∶= typeerror 𝑒 ∣ 𝑒′

A step-result 𝑟 is either a typeerror 𝑒 indicating a dynamic type error in attempting to reduce
𝑒 or a successful one-step reduction to an expression 𝑒′.

We represent a step-result 𝑟 in Scala using a type Either[DynamicTypeError, Expr]:

case class DynamicTypeError(e: Expr) {
override def toString = s"TypeError: in expression $e"

}
type Result = Either[DynamicTypeError, Expr] // r ::= typeerror e | e

defined class DynamicTypeError
defined type Result

Note that unlike before, DynamicTypeError is not an Exception, so it cannot be thrown.

The small-step semantics that we should implement are given in the section below (Sec-
tion 22.5). The language we implement is JavaScripty with numbers, booleans, strings,
undefined, printing, and first-class functions. It is a simpler language than the previous
lab because we remove type coercions (except to booleans) and replace most coercion cases
with dynamic type error typeerror 𝑒.

254

Exercise 22.4 (Step without Dynamic Type Checking). We advise first implementing the
cases restricted to judgments of the form 𝑒 ⟶ 𝑒′, that is, implement the Do and Search rules
while ignoring the TypeError and Propagate rules. Start with implementing a stepBasic
function with type:

def stepBasic(e: Expr): Expr = ???

defined function stepBasic

That is, just crash with a MatchError exception if your step encounters any ill-typed expres-
sion e.

The suggested practice here is to read some rules, write a few tests for those rules, and
implement the cases for those tests.

Exercise 22.5 (Step with Dynamic Type Checking). Then, copy your code from stepBasic
to stepCheck:

def stepCheck(e: Expr): Either[DynamicTypeError, Expr] = ???

defined function stepCheck

to then add dynamic type checking. You will likely need to refactor your code to satisfy the
new types before implementing the TypeError and Propagate rules.

Exercise 22.6 (To Boolean). You will need to implement a toBoolean function to convert
JavaScripty values to booleans, following the ToBoolean rules in Section 22.5.

def toBoolean(e: Expr): Boolean = ???

defined function toBoolean

However, you will not need any other type coercion functions here.

Notes

• Note that the tests call the step function that is originally defined as:

255

//def step(e: Expr): Either[DynamicTypeError, Expr] = Right(stepBasic(e))
def step(e: Expr): Either[DynamicTypeError, Expr] = stepCheck(e)

You can first test stepBasic by uncommenting the first line and commenting out the
second line.

• Note that the provided tests are minimal. You will want to add your own tests to cover
most language features.

22.5 Small-Step Operational Semantics

In this section, we give the small-step operational semantics for JavaScripty with numbers,
booleans, strings, undefined, printing, and first-class functions. We have type coercions to
booleans but otherwise use dynamic type error for other cases.

We write [𝑣/𝑥]𝑒 for substituting value 𝑣 for all free occurrences of the variable 𝑥 in expression
𝑒 (i.e., a call to substitute).

It is informative to compare the small-step semantics used in this lab and the big-step semantics
from last homework.

22.5.1 Do Rules

22.5.2 Search Rules

22.5.3 Coercing to Boolean

22.5.4 Dynamic Typing Rules

22.6 Concept Exercises

Make sure to complete the concept exercises in this section and turn in this file as part of
your submission. However, all code and testing exercises from other sections are submitted in
Lab3.scala or Lab3Spec.scala.

Exercise 22.7 (Evaluation Order). Consider the small-step operational semantics shown in
Section 22.5. What is the evaluation order for 𝑒1 + 𝑒2? Explain.

Edit this cell:

???

256

𝑒 ⟶ 𝑒′

DoNeg
𝑛′ = −𝑛1
-𝑛1 ⟶ 𝑛′

DoArith
𝑛′ = 𝑛1 bop 𝑛2 bop ∈ {+, -, *, /}

𝑛1 bop 𝑛2 ⟶ 𝑛′

DoPlusString
str′ = str1str2

str1 + str2 ⟶ str′

DoInequalityNumber
𝑏′ = 𝑛1 bop 𝑛2 bop ∈ {<, <=, >, >=}

𝑛1 bop 𝑛2 ⟶ 𝑏′

DoInequalityString
𝑏′ = str1 bop str2 bop ∈ {<, <=, >, >=}

str1 bop str2 ⟶ 𝑏′

DoEquality
𝑏′ = (𝑣1 bop 𝑣2) bop ∈ {===, !==}

𝑣1 bop 𝑣2 ⟶ 𝑏′

DoNot
𝑣1 ⇝ 𝑏1

! 𝑣1 ⟶ ¬𝑏1

DoAndTrue
𝑣1 ⇝ true

𝑣1 && 𝑒2 ⟶ 𝑒2

DoAndFalse
𝑣1 ⇝ false

𝑣1 && 𝑒2 ⟶ 𝑣1

DoOrTrue
𝑣1 ⇝ true

𝑣1 || 𝑒2 ⟶ 𝑣1

DoOrFalse
𝑣1 ⇝ false

𝑣1 || 𝑒2 ⟶ 𝑒2

DoIfTrue
𝑣1 ⇝ true

𝑣1 ? 𝑒2 : 𝑒3 ⟶ 𝑒2

DoIfFalse
𝑣1 ⇝ false

𝑣1 ? 𝑒2 : 𝑒3 ⟶ 𝑒3

DoSeq

𝑣1 , 𝑒2 ⟶ 𝑒2

DoPrint
𝑣1 printed

console.log(𝑣1) ⟶ undefined

DoConst

const 𝑥 = 𝑣1; 𝑒2 ⟶ [𝑣1/𝑥]𝑒2

DoCall

((𝑥) => 𝑒1)(𝑣2) ⟶ [𝑣2/𝑥]𝑒1

DoCallRec
𝑣1 = (𝑥1(𝑥2) => 𝑒1)

𝑣1(𝑣2) ⟶ [𝑣1/𝑥1][𝑣2/𝑥2]𝑒1

Figure 22.1: The Do rules for JavaScripty with numbers, booleans, strings, undefined, print-
ing, and first-class functions.

𝑒 ⟶ 𝑒′

SearchUnary
𝑒1 ⟶ 𝑒′

1
uop 𝑒1 ⟶ uop 𝑒′

1

SearchBinary1
𝑒1 ⟶ 𝑒′

1
𝑒1 bop 𝑒2 ⟶ 𝑒′

1 bop 𝑒2

SearchBinary2
𝑒2 ⟶ 𝑒′

2
𝑣1 bop 𝑒2 ⟶ 𝑣1 bop 𝑒′

2

SearchIf
𝑒1 ⟶ 𝑒′

1
𝑒1 ? 𝑒2 : 𝑒3 ⟶ 𝑒′

1 ? 𝑒2 : 𝑒3

SearchPrint
𝑒1 ⟶ 𝑒′

1
console.log(𝑒1) ⟶ console.log(𝑒′

1)

SearchConst
𝑒1 ⟶ 𝑒′

1
const 𝑥 = 𝑒1; 𝑒2 ⟶ const 𝑥 = 𝑒′

1; 𝑒2

SearchCall1
𝑒1 ⟶ 𝑒′

1
𝑒1(𝑒2) ⟶ 𝑒′

1(𝑒2)

SearchCall2
𝑒2 ⟶ 𝑒′

2
𝑣1(𝑒2) ⟶ 𝑣1(𝑒′

2)

Figure 22.2: The Search rules for JavaScripty with numbers, booleans, strings, undefined,
printing and first-class functions.

257

𝑣 ⇝ 𝑏
ToBooleanNumFalse
𝑛 ∈ {0.0, −0.0, NaN}

𝑛 ⇝ false

ToBooleanNumTrue
𝑛 ∉ {0.0, −0.0, NaN}

𝑛 ⇝ true

ToBooleanBoolean

𝑏 ⇝ 𝑏

ToBooleanStrFalse

"" ⇝ false

ToBooleanStrTrue
str ≠ ""

str ⇝ true

ToBooleanUndefined

undefined ⇝ false

ToBooleanFun

𝑥?(𝑦) => 𝑒 ⇝ true

Figure 22.3: The ToBoolean rules for JavaScripty with numbers, booleans, strings,
undefined, and first-class functions.

Exercise 22.8 (Changing Evaluation Order). How do we change the rules to obtain the
opposite evaluation order?

Edit this cell:

???

Exercise 22.9 (Using Short-Circuit Evaluation). Give an example that illustrates the useful-
ness of short-circuit evaluation. Explain your example.

Edit this cell:

???

Exercise 22.10 (Removing Short-Circuit Evaluation). Consider the small-step operational
semantics shown in Section 22.5. Does 𝑒1 &&𝑒2 short circuit? Explain. If 𝑒1 &&𝑒2 short circuits,
give rules that eliminates short circuiting. If it does not short circuit, give the short-circuiting
rules.

Edit this cell:

???

258

𝑒 ⟶ 𝑟
TypeErrorNeg

𝑣1 ≠ 𝑛1
- 𝑣1 ⟶ typeerror(- 𝑣1)

TypeErrorPlus1
𝑣1 ≠ 𝑛1 𝑣1 ≠ str1

𝑣1 + 𝑣2 ⟶ typeerror(𝑣1 + 𝑣2)

TypeErrorPlusString2
𝑣2 ≠ str2

str1 + 𝑣2 ⟶ typeerror(str1 + 𝑣2)

TypeErrorArith1
𝑣1 ≠ 𝑛1 bop ∈ {-, *, /}

𝑣1 bop 𝑣2 ⟶ typeerror(𝑣1 bop 𝑣2)

TypeErrorArith2
𝑣2 ≠ 𝑛2 bop ∈ {+, -, *, /}

𝑛1 bop 𝑣2 ⟶ typeerror(𝑛1 bop 𝑣2)

TypeErrorInequality1
𝑣1 ≠ 𝑛1 𝑣1 ≠ str1 bop ∈ {<, <=, >, >=}

𝑣1 bop 𝑣2 ⟶ typeerror(𝑣1 bop 𝑣2)

TypeErrorInequalityNumber2
𝑣2 ≠ 𝑛2 bop ∈ {<, <=, >, >=}

𝑛1 bop 𝑣2 ⟶ typeerror(𝑛1 bop 𝑣2)

TypeErrorInequalityString2
𝑣2 ≠ str2 bop ∈ {<, <=, >, >=}

str1 bop 𝑣2 ⟶ typeerror(str1 bop 𝑣2)

TypeErrorCall
𝑣1 ≠ 𝑥?(𝑦) => 𝑒1

𝑣1(𝑣2) ⟶ typeerror(𝑣1(𝑣2))

PropagateUnary
𝑒1 ⟶ typeerror 𝑒

uop 𝑒1 ⟶ typeerror 𝑒

PropagateBinary1
𝑒1 ⟶ typeerror 𝑒

𝑒1 bop 𝑒2 ⟶ typeerror 𝑒

PropagateBinary2
𝑒2 ⟶ typeerror 𝑒

𝑣1 bop 𝑒2 ⟶ typeerror 𝑒

PropagateIf
𝑒1 ⟶ typeerror 𝑒

𝑒1 ? 𝑒2 : 𝑒3 ⟶ typeerror 𝑒

PropagatePrint
𝑒1 ⟶ typeerror 𝑒

console.log(𝑒1) ⟶ typeerror 𝑒

PropagateConst
𝑒1 ⟶ typeerror 𝑒

const 𝑥 = 𝑒1; 𝑒2 ⟶ typeerror 𝑒

PropagateCall1
𝑒1 ⟶ typeerror 𝑒

𝑒1(𝑒2) ⟶ typeerror 𝑒

PropagateCall2
𝑒2 ⟶ typeerror 𝑒

𝑣1(𝑒2) ⟶ typeerror 𝑒

Figure 22.4: The TypeError and Propagate rules for JavaScripty with numbers, booleans,
strings, undefined, printing, and first-class functions.

259

22.7 Testing

This section has some space to write some tests in our subset of JavaScript. You might want
to work on these tests while you are implementing step. As before, you will add your tests to
Lab3StudentSpec. Your interpreter will run the tests against the expected result you provide.
We will write three tests, all of these tests must properly parse.

Exercise 22.11 (Test 1: Higher-Order Function). Write a test case that has a function that
takes a function value as an argument (i.e., is a higher order function):

???

Exercise 22.12 (Test 2: Recursion). Write a test case that uses recursion

???

Exercise 22.13 (Test 3: Any Test in this variant of JavaScripty). Write another test

???

Notes

• Remember to add these to Lab3StudentSpec in Lab3Spec.scala.
• Add the JavaScripty code as a string in jsyStr and the expected result in answer.

22.8 Accelerated Component

For the accelerated component of this lab, we will give rules and implement the behavior that
enables us to match JavaScript semantics. In particular, we will give rules and implement type
coercions for numbers and strings, and we will update our small-step operational semantics to
use them.

22.8.1 Additional Type Coercions

Exercise 22.14. Give the inference rules defining the judgment form for coercing a value to
a number 𝑣 ⇝ 𝑛

Edit this cell:

???

260

Exercise 22.15. Give the inference rules defining the judgment form for coercing a value to
a string 𝑣 ⇝ str

Edit this cell:

???

Exercise 22.16. Implement the toNumber and toStrcoercions.

def toNumber(v: Expr): Double = ???
def toStr(v: Expr): String = ???

defined function toNumber
defined function toStr

Notes

• If your recall Lab 2, we implemented these functions. They will be the same here, except
we must add the rules for functions.

22.8.2 Updating the Small-Step Operational Semantics

Now that we are allowing type coersions, our operational semantics will change. For example,
consider the following Do rule:

DoNeg
𝑣 ⇝ 𝑛

- 𝑣 ⟶ −𝑛

This is a new rule for DoNeg, which is read as if 𝑣 coerces to 𝑛, then - 𝑣 steps to −𝑛. Now
that we are allowing non-numbers to be coerced and then negated, we no longer have our
TypeErrorNeg rule.

Note that we only need to update Do rules with coercions and remove TypeError rules. We
do not need to update the Search or Propagage rules.

Exercise 22.17. Explain why we only need to update the Do rules with coercions and remove
TypeError rules, and we do not need to update the Search or Propagage rules.

261

Edit this cell:

???

One rule of particular interest is DoArith, which we need to split to account for 𝑒1 + 𝑒2 being
overloaded for numbers and strings. Given this, we need to rewrite DoArith so it does not
include + (and adds coersions), add the rule DoPlusNumber, and alter DoPlusString to
become two rules.

Exercise 22.18. Give these new Do rules

Edit this cell:

???

Similar to this, our DoInequalityNumber rule must be split into two and altered:

Exercise 22.19. Give the two new DoInequalityNumber1 and DoInequalityNumber2 rules:

Edit this cell:

???

Once we have all of these rules defined, we notice that most of our typeerror rules no longer
result in type errors. Therefore, most of them should be deleted. In fact, the only non-
propagate rule left for type errors is TypeErrorCall, since we are still not allowed to call
something that is not a function (in JavaScript).

22.8.3 Update Step

Exercise 22.20. Now that we have our type conversion functions implemented and our new
rules defined, we are ready to update step. Implement stepCoerce by first copying your code
from stepCheck and then update based on your new rules.

def stepCoerce(e: Expr): Either[DynamicTypeError,Expr] = ???

defined function stepCoerce

As before, let the rules guide your implementation.

Notes

• None of your other functions should need to be altered.

262

Submission

If you are a University of Colorado Boulder student, we use Gradescope for assignment sub-
mission. In summary,

□ Create a private GitHub repository by clicking on a GitHub Classroom link from the
corresponding Canvas assignment entry.

□ Clone your private GitHub repository to your development environment (using the <>
Code button on GitHub to get the repository URL).

□ Work on this lab from your cloned repository. Use Git to save versions on GitHub (e.g.,
git add, git commit, git push on the command line or via VSCode).

□ Submit to the corresponding Gradescope assignment entry for grading by choosing
GitHub as the submission method.

You need to have a GitHub identity and must have your full name in your GitHub profile in
case we need to associate you with your submissions.

263

23 Review: Semantics

Instructions

This assignment is a review exercise in preparation for a subsequent assessment activity.

This is a peer-quizzing activity with two students. Each section has an even number of exercises.
Student A quizzes Student B on the odd numbered exercises, and Student B quizzes Student
A on the even numbered exercises.

To the best of your ability, give feedback using the learning-levels rubric below on where your
peer is in reaching or exceeding Proficient (P) on each question live. Guidance of what a
Proficient (P) answer looks like are given.

There may or may not be a member of the course staff assigned to your slot. It is expected that
regardless of whether a member of the course staff is present, this is a peer-quizzing activity. If
a member of the course staff is present, you may ask for their help and guidance on answering
the questions and/or their assessment of where you are at in your learning level.

It is not expected that you can complete all exercises in the allotted time. You and your partner
may pick and choose which sections you want to focus on and use the remaining questions
as a study guide. You and your partner may, of course, continue working together after the
scheduled session.

At the same time, most questions can be answered in a few minutes with a Proficient (P) level
of understanding. Aim for 3–4 sections in 30 minutes.

Your submission for this session is an overall assessment of where your partner is in their
reaching-or-exceeding-proficiency level. Be constructive and honest. Neither your nor your
partners grade will depend on your learning-level assessment. Instead, your score for
this assignment will be based on the thoughtfulness of your feedback to your partner.

Submit on Gradescope as a pair. That is, use Gradescope’s group assignment feature to submit
as a group. The submission form has a spot for each of you to provide your assessment and
feedback for each other.

Please proactively fill slots with an existing sign-up to have a partner. In case your peer does
not show up to the slot, try to join another slot happening at the same time from the course
calendar. If that fails and a course staff member is present, you may do the exercise with the
staff member and get credit. If there is no staff member present, you may try to find a slot at

264

a later time if you like or else write to the Course Manager on Piazza timestamped during the
slot.

Learning-Levels Rubric

4 - Exceeding (E) Student demonstrates synthesis of the underlying concepts. Student can
go beyond merely describing the solution to explaining the underlying reasoning and
discussing generalizations.

3 - Proficient (P) Student is able to explain the overall solution and can answer specific
questions. While the student is capable of explaining their solution, they may not be
able to confidently extend their explanation beyond the immediate context.

2 - Approaching (A) Student may able to describe the solution but has difficulty answering
specific questions about it. Student has difficulty explaining the reasoning behind their
solution.

1 - Novice (N) Student has trouble describing their solution or responding to guidance. Stu-
dent is unable to offer much explanation of their solution.

23.1 Dynamic versus Static Scoping

Exercise 23.1. Consider the following JavaScripty code. What is the resulting value you
would expect from an interpreter that implements dynamic scoping? What about one that
implements static scoping? Explain.

const x = 4;
const f = (y) => x * 2;
((x) => f(5))(8)

A Proficient (P) answer recognizes that the resulting value is different under dy-
namic versus static scoping. It discusses that this difference is due to the fact
that an interpreter that implements dynamic scoping would evaluate the function
(y) => x * 2 (which is bound to f) with the value environment at the time it is
called, instead of the environment at the time it is defined. Static scoping, which is
what we usually expect, evaluates functions with the value environment in which
they were defined in.

An Exceeding (E) answer also explains how dynamic scoping arises accidentally
in an interpreter that uses value environments, perhaps by giving an operational
semantics rule for function call that exhibits dynamic scoping.

265

Exercise 23.2. Consider the following inference rules which define a big-step or small-step
operational semantics for non-recursive function literals and function call expressions. For
each one, write if it implements dynamic scoping or static scoping. Choose one rule to explain
fully. In this explanation, discuss why the rule does or does not implement dynamic scoping.
Also write out what each aspect of the rule is stating.

1.

𝑒 ⟶ 𝑒′
DoCall

((𝑥) => 𝑒1)(𝑣2) ⟶ [𝑣2/𝑥]𝑒1

SearchCall1
𝑒1 ⟶ 𝑒′

1
𝑒1(𝑒2) ⟶ 𝑒′

1(𝑒2)

SearchCall2
𝑒2 ⟶ 𝑒′

2
𝑣1(𝑒2) ⟶ 𝑣1(𝑒′

2)

2.

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalCall
𝐸 ⊢ 𝑒1 ⇓ (𝑥) => 𝑒′ 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝐸[𝑥 ↦ 𝑣2] ⊢ 𝑒′ ⇓ 𝑣′

𝐸 ⊢ 𝑒1(𝑒2) ⇓ 𝑣′

3.

𝐸 ⊢ 𝑒 ⇓ 𝑣
EvalFun

𝐸 ⊢ (𝑥) => 𝑒 ⇓ (𝑥) => 𝑒[𝐸]

EvalCall
𝐸 ⊢ 𝑒1 ⇓ (𝑥) => 𝑒′[𝐸′] 𝐸 ⊢ 𝑒2 ⇓ 𝑣2 𝐸′[𝑥 ↦ 𝑣2] ⊢ 𝑒′ ⇓ 𝑣′

𝐸 ⊢ 𝑒1(𝑒2) ⇓ 𝑣′

4.

𝑒 ⇓ 𝑣
EvalCall
𝑒1 ⇓ (𝑥) => 𝑒′ 𝑒2 ⇓ 𝑣2 [𝑣2/𝑥]𝑒′ ⇓ 𝑣′

𝑒1(𝑒2) ⇓ 𝑣′

A Proficient (P) answer correctly states which rules implement dynamic scoping (2)
and which do not (1, 3, 4). For the explanation, it explains what general strategy is
used (e.g., big-step with value environments and closures) and why or why not does
this strategy result in dynamic scoping. For example, using closures results in static
scoping because the value environment in which the function was defined is saved
in the closure. When functions are called, the value environment from the closure
is extended with the parameter, and then the body is evaluated. A Proficient (P)
answer also correctly states each aspect of the premise and conclusion of the rule.

266

23.2 Small-Step Semantics with Coercions

We consider a subset of JavaScripty that includes variables (𝑥), variable binding (const),
arithmetic plus (+), arithmetic negation (-), boolean conjunction (&&), and boolean negation
(!). The values of our language are numbers (𝑛) and booleans (𝑏). Below is the abstract
syntax.

expressions 𝑒 ∶∶= 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2 ∣ 𝑒1 bop 𝑒2 ∣ uop 𝑒1 ∣ 𝑛 ∣ 𝑏
binary operators bop ∶∶= + ∣ &&
unary operators uop ∶∶= - ∣ !

values 𝑣 ∶∶= 𝑛 ∣ 𝑏
variables 𝑥

Figure 23.1: Syntax for JavaScripty with variables and some minimal arithmetic and boolean
expressions.

Our rules for coercing a value to a number are as follows.

𝑣 ⇝ 𝑛
ToNumberNum

𝑛 ⇝ 𝑛
ToNumberTrue

true ⇝ 1
ToNumberFalse

false ⇝ 0

Exercise 23.3. Define the judgment form 𝑣 ⇝ 𝑏. That is, write the inference rules for coercing
a value to a boolean. Recall 0 coerces to false, and anything else coerces to true.

A Proficient (P) answer correctly gives two rules. All rules are not inductive (i.e.,
do not have a 𝑣 ⇝ 𝑏 judgment in the premise). For clarity, the judgment form
should be given in a box above the rules.

Exercise 23.4. Write the Search and Do rules for stepping a const 𝑥 = 𝑒1; 𝑒2 expression
and a variable-use expression 𝑥. Our small-step judgment form is 𝑒 ⟶ 𝑒′ that says, “Closed
expression 𝑒 reduces to closed-expression 𝑒′ in one step.”

A Proficient (P) answer writes two correct rules. The rules are DoConst and
SearchConst. DoConst should require that 𝑒1 is a value, then step to 𝑒2 with a
substitution for the binding of variable 𝑥.

An Exceeding (E) answer writes all of the rules correctly, recognizes why we do
not need a Do rule for variable uses, and understands why substitution enables us
to maintain the invariant that 𝑒 and 𝑒′ in 𝑒 ⟶ 𝑒′ are closed expressions. There is
no Do rule for variable uses because expression 𝑒 must be a closed expression.

267

𝑒 ⟶ 𝑒′

DoNeg
𝑣1 ⇝ 𝑛1

- 𝑣1 ⟶ −𝑛1

DoNot
𝑣1 ⇝ 𝑏1

! 𝑣1 ⟶ ¬𝑏1

SearchUnary
𝑒1 ⟶ 𝑒′

1
uop 𝑒1 ⟶ uop 𝑒′

1

Figure 23.2: A small-step operational semantics for the unary expressions.

Below is a small-step operational semantics for stepping unary expressions:

Exercise 23.5. Complete the inductive definition of 𝑒 ⟶ 𝑒′ by writing the Search and Do
rules for stepping binary expressions. You need to write two Search rules and two Do rules.

An Proficient (P) answer writes four or five rules. There should be two Search
rules that should include a premise that one side of the binary expression takes a
step. The Do rules should probably use coercions following the example for unary
expressions (e.g., 𝑣1 ⇝ 𝑛1).

An Exceeding (E) answer will consider different semantic choices. For the Search
rules, the answers can consider left-to-right evaluation, right-to-left evaluation, or
non-deterministic evaluation. Such an answer will explain that a deterministic
left-to-right or right-to-left would require the other side of the binary expression
is already a value. For the DoAnd rule(s), an Exceeding (E) answer will consider
whether to implement short-circuiting or not.

Note that one possible correct solution for the rules asked about in the above exercises are
given in the preceding chapters (cf. Chapter 21 or Section 22.5)

Exercise 23.6. Consider the following expression 𝑒0:

const h = true; (h + 3) && false

Then, is the judgment

const h = true; (h + 3) && false ⟶ 𝑒1

for some expression 𝑒1 derivable using your rules? If so, give the derivation with the appropriate
𝑒1.

Then, is the judgment 𝑒1 ⟶ 𝑒2 derivable using your rules? If so, give the derivation with the
appropriate 𝑒2.

Repeat until giving derivations for 𝑒𝑖 ⟶ 𝑒𝑖+1 until the step-judgment is not derivable. Explain
why this last step-judgment is not derivable.

268

Explain how these derivations are connected to your interpreter implementation of these rules
from the lab assignment.

A Proficient (P) shows derivations for the judgments

const h = true; (h + 3) && false ⟶ (true + 3) && false

(true + 3) && false ⟶ 4 && false

4 && false ⟶ false

It should state that there is no deriviation for the judgment false ⟶ 𝑒4 for any
expression 𝑒4 because the step-judgment form defines a reduction step and false
is a value. Note that a Proficient (P) answer may give different judgments here
corresponding to a different evaluation-order semantics. The particular judgments
should correspond to the given rules. Each of the derivations has some number of
Search rule applications and ends with a Do rule application as an axiom (reading
from the bottom up).

Regarding the interpreter implementation, a Proficient (P) answer should also rec-
ognize that a judgment 𝑒𝑖 ⟶ 𝑒𝑖+1 corresponds to a call of step. An Exceeding (E)
answer recognizes that each application of a Search rule corresponds to a recursive
call of step and observes that there is only one recursive call in each Search rule
to find the redex in which to apply a Do rule.

23.3 Short-Circuit Evaluation and Evaluation Order

Exercise 23.7. Does the rule you wrote in Exercise 23.5 for && short circuit? Explain why
or why not. If it does, rewrite the rule so that it does not short circuit. If it does not, rewrite
it so it does short circuit.

A Proficient (P) answer understands why && does or does not short-circuit. This
is determined by the DoAnd rule(s). If DoAnd rule(s) do not require each sub-
expression to be a value before eliminating the && operator, then it does short
circuit. If both sub-expressions are required to be a value before eliminating the
&& operator, then it does not short-circuit. Note that the direction that the DoAnd
rules depends on the way the SearchBinary rules implement evaluation order.

Exercise 23.8. What is the evaluation order of the search rules you wrote in Exercise 23.5?
Explain. Write new rules that changes the evaluation order (e.g., from left-to-right to right-
to-left).

269

A Proficient (P) answer understands how Search rules determine evaluation order.
If SearchBinary2 requires 𝑒1 to be a value (𝑣1) in order to step 𝑒2, then the eval-
uation order is left-to-right. This is assuming SearchBinary1 is written correctly
by not requiring either to be a value. These rules force 𝑒1 to be evaluated before
𝑒2 in a binary expression.

23.4 Big-Step Semantics with Substitution and Dynamic Type
Errors

In the preceding chapters, we considered a big-step semantics with environments and a small-
step semantics with substitution. We noted that these are orthogonal considerations, so in
this section, consider one of the alternatives, namely big-step semantics with substitution.

We consider a subset of JavaScripty that includes potentially recursive and non-recursive
function literals, function calls, and the binary expressions from the language described in
Figure 23.1. The abstract syntax is as follows:

values 𝑣 ∶∶= 𝑛 ∣ 𝑏 ∣ 𝑥?(𝑦) => 𝑒1
expressions 𝑒 ∶∶= 𝑥 ∣ 𝑛 ∣ 𝑏 ∣ 𝑥?(𝑦) => 𝑒1 ∣ 𝑒1 bop 𝑒2 ∣ 𝑒1(𝑒2)

binary operators bop ∶∶= && ∣ +
optional variables 𝑥? ∶∶= 𝑥 ∣ 𝜀

variables 𝑥

Below are the inference rules for evaluating values, binary expressions, and non-recursive
function calls, that is, all except for potentially recursive function calls.

𝑒 ⇓ 𝑣
EvalVal

𝑣 ⇓ 𝑣

EvalPlus
𝑒1 ⇓ 𝑛1 𝑒2 ⇓ 𝑛2
𝑒1 + 𝑒2 ⇓ 𝑛1 + 𝑛2

EvalAndTrue
𝑒1 ⇓ true 𝑒2 ⇓ 𝑏2

𝑒1 && 𝑒2 ⇓ 𝑏2

EvalAndFalse
𝑒1 ⇓ false

𝑒1 && 𝑒2 ⇓ false

EvalCall
𝑒1 ⇓ (𝑦) => 𝑒′ 𝑒2 ⇓ 𝑣2 [𝑣2/𝑦]𝑒′ ⇓ 𝑣′

𝑒1(𝑒2) ⇓ 𝑣′

Figure 23.3: A big-step operational semantics for JavaScripty with function literals, function
calls, and some binary expressions.

Exercise 23.9. Consider the rules in Figure 23.3, why do we not need a rule for evaluating
variables?

270

A Proficient (P) answer understands that we do not need a rule for evaluating
variables because we are using substitution. Variable uses will always be replaced
by their values using substitute.

An Exceeding (E) answer also recognizes that we are requiring all of our expressions
to be closed in our evaluation judgment form 𝑒 ⇓ 𝑣. Considering an implementation,
open expressions would lead to a match error for not matching on a top-level Var.

Exercise 23.10. Is the judgment

((x) => ((y) => y + x))(2) ⇓ 𝑣

derivable using the rules given above? If so, give the derivation. If not, explain why not.

Assume that the concrete syntax allows JavaScripty programmers to parenthesize expressions,
so the expression is syntactially valid.

An Proficient (P) answer states the value 𝑣 is the function value (y) => y + 2 and
gives a correct derivation with four rule applications. Reading bottom up, the root
rule application is an EvalCall with three sub-derivations each being applications
of EvalVal.

An Exceeding (A) answer might also first observe that the expression is well-typed,
so the judgment should hold before proceeding to giving a correct derivation.

Exercise 23.11. Write the inference rule for recursive function calls.

A Proficient (P) answer gives the correct rule for recursive function calls. This rule
must:

• Show that 𝑒1 evaluates to the identified recursive function value, say 𝑣1.
• Correctly substitute the function identifier with 𝑣1 in the expression 𝑒1 with

the formal parameter substituted with the actual argument.
• Show that the evaluation of the above expression is what the call evaluates

to.

Exercise 23.12. The Scala AST representation for our JavaScripty language has the Var
constructor for variables, N for numbers, B for booleans, and Fun for functions. We will
represent 𝑥? (function identifiers) with the Option[String] type. Implement the remainder
of the following substitute function for our small-step interpreter.

271

trait Expr
case class Var(x: String) extends Expr
case class N(n: Double) extends Expr
case class B(b: Boolean) extends Expr
case class Fun(xopt: Option[String], y: String, e1: Expr) extends Expr
case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr
case class Call(e1: Expr, e2: Expr) extends Expr

trait Bop
case object And extends Bop
case object Plus extends Bop

def isValue(e: Expr) = e match {
case N(_) | B(_) | Fun(_, _, _) => true
case _ => false

}

def substitute(v: Expr, x: String, e: Expr): Expr = {
def subst(e: Expr): Expr = e match {

case Var(y) => ???
case _ => ???

}
???

}

defined trait Expr
defined class Var
defined class N
defined class B
defined class Fun
defined class Binary
defined class Call
defined trait Bop
defined object And
defined object Plus
defined function isValue
defined function substitute

A Proficient (P) answer implements cases for all Expr cases. For Var, the answer
needs to distinguish between shadowing and not shadowing. For Fun, the answer
needs to consider the binding of the formal parameter and the possible binding of
the optional parameter for the function name. The N and B can be done in the

272

same pattern match, though having them separate is fine. The other cases are not
binding constructs, so the answer just needs to reconstruct with recursively calling
subst on each sub-expression. Finally, the answer needs to call subst.

An Exceeding (E) answer implements all substitution cases correctly. It might
observe that the subst helper function is not strictly necessary but convenient
since the v and x are fixed throughout the recursion. It should also note that we
have an unstated requirement that v is closed, so we do not need to worry about
the possiblity of free-variable capture.

In Figure 23.3, we define evaluation only for well-typed terms. Let us extend the evaluation
judgment form with dynamic type checking.

A dynamic type error typeerror 𝑒 results if the && operator is applied to numbers, if + is applied
to booleans, or if a non-function value is called. We extend our evaluation judgment form
𝑒 ⇓ 𝑟 to return evaluation-results that may be a typeerror or a value:

evaluation-results 𝑟 ∶∶= typeerror 𝑒 ∣ 𝑣

Some of our dynamic type error rules are given below:

𝑒 ⇓ 𝑟
TypeErrorPlus1

𝑒1 ⇓ 𝑣1 𝑣1 ≠ 𝑛1
𝑒1 + 𝑒2 ⇓ typeerror(𝑒1 + 𝑒2)

TypeErrorAnd2
𝑒2 ⇓ 𝑣2 𝑣2 ≠ 𝑏2

𝑒1 && 𝑒2 ⇓ typeerror(𝑒1 && 𝑒2)

TypeErrorCall
𝑒1 ⇓ 𝑣1 𝑣1 ≠ 𝑥?(𝑦) => 𝑒1
𝑒1(𝑒2) ⇓ typeerror(𝑒1(𝑒2))

PropagateBinary2
𝑒2 ⇓ typeerror 𝑒

𝑒1 bop 𝑒2 ⇓ typeerror 𝑒

Exercise 23.13. Give the missing rules TypeError and Propagate rules.

A Proficient (P) answer gives correct rules analogous to the above rules for
TypeErrorPlus2, TypeErrorAnd1, PropagateBinary1, PropagateCall1, and
PropagateCall2.

An Exceeding (E) answer also understands why we need the Propagate rules and
can explain the issue with not having them. It also explains what would happen
in an implementation if they were not given. An Exceeding (E) answer may be
able to give one or two rules explicitly and could explain the others unambiguously
without necessarily giving them explicitly.

273

Exercise 23.14. Implement enough cases of the dynamic type-checking evaluator you defined
in Exercise 23.13 in Scala using the Either[DynamicTypeError, Expr] type for an evaluation-
result 𝑟 to be able to evaluate expressions in the sub-language:

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑏 ∣ 𝑒1 bop 𝑒2
binary operators bop ∶∶= +

case class DynamicTypeError(e: Expr)
def eval(e: Expr): Either[DynamicTypeError, Expr] = ???

defined class DynamicTypeError
defined function eval

Recall that the constructors for Either[Err,A] are Left(err: Err) and Right(a: A) and
the map and flatMap methods transform Right values.

A Proficient (P) answer recognizes that the EvalVal, EvalPlus, TypeErrorPlus1,
and TypeErrorPlus2 rules, as well as PropagateBinary1 and PropagateBinary2
rules instantiated for + need to implemented for this sub-language:

def eval(e: Expr): Either[DynamicTypeError, Expr] = e match {
// EvalVal
case v if isValue(v) => Right(v)
case Binary(Plus, e1, e2) => eval(e1) match {

case Right(N(n1)) => eval(e2) match {
// EvalPlus
case Right(N(n2)) => Right(N(n1 + n2))
// TypeErrorPlus2
case Right(_) => Left(DynamicTypeError(e))
// PropagateBinary2 (for Plus)
case err @ Left(_) => err

}
// TypeErrorPlus1
case Right(_) => Left(DynamicTypeError(e))
// PropagateBinary1 (for Plus)
case err @ Left(_) => err

}
case _ => ???

}

defined function eval

274

An Exceeding (E) answer may use flatMap to more conveniently implement the
Propagate rules, though it should recognize that those rules are indeed being
implemented within the calls to flatMap.

275

Part V

Static Checking

276

24 Higher-Order Functions

Returning to programming principles, recall that in many languages like Scala, functions are
first-class. What this means is that functions are values — they may be passed as arguments
or returned as returned values from other functions. Functions that take function arguments
are called higher-order functions.

24.1 Currying

Recall that we can write down function literals and bind them to variables:

(n: Int) => n + 1
((n: Int) => n + 1)(41)

val incr: Int => Int = { n => n + 1 }
incr(41)

res0_0: Int => Int = ammonite.$sess.cmd0$Helper$$Lambda$1811/0x0000000800a39840@edb2f86
res0_1: Int = 42
incr: Int => Int = ammonite.$sess.cmd0$Helper$$Lambda$1813/0x0000000800a3b040@3c5a87fa
res0_3: Int = 42

We have seen that with first-class functions (and lexical scoping), we do not need tuples or
other data structures to have multi-parameter functions. In particular, a function that returns
another function behaves like a multi-parameter function. This is called currying.

val plus: Int => Int => Int = { x => y => x + y }
plus(3)(4)

plus: Int => Int => Int = ammonite.$sess.cmd1$Helper$$Lambda$1925/0x0000000800a96040@7a746d0d
res1_1: Int = 7

Since currying is a common thing to do, Scala has some syntactic sugar for it:

277

def plus(x: Int)(y: Int): Int = x + y
plus(3)(4)

defined function plus
res2_1: Int = 7

One reason to use currying is to enable partial application. For example, we can define incr
using plus:

val incr: Int => Int = plus(1)
incr(41)

incr: Int => Int = ammonite.$sess.cmd3$Helper$$Lambda$1942/0x0000000800a9b840@570dea5c
res3_1: Int = 42

Sometimes partial application is simply for defining new functions in terms of others in a com-
pact manner. Other times, partial application enables some non-trivial partial computation.

This is a silly example to illustrate the latter, defining a function addToFactorial that com-
putes the n ! and then returns a function to add some number to that:

def addToFactorial(n: Int): Int => Int = {
def factorial(n: Int): Int = n match {

case 0 => 1
case _ => n * factorial(n - 1)

}
val nth = factorial(n)
m => nth + m

}

defined function addToFactorial

We can compute 10! once and then reuse it with the function tenFactorialPlus:

val tenFactorialPlus = addToFactorial(10)
tenFactorialPlus(47)
tenFactorialPlus(59)

tenFactorialPlus: Int => Int = ammonite.$sess.cmd4$Helper$$Lambda$1970/0x0000000800ab2040@78256aa6
res5_1: Int = 3628847
res5_2: Int = 3628859

278

24.2 Collections and Callbacks

We have seen standard data types like lists, options, maps, and sets that are often called
collections, as they are generic in the values they collect together (see Section 6.1).

What is common to collection libraries is that the client of the library must have some way
to work with the elements managed by the collection. Because the client decides the element
type, the library implements higher-order functions that take a callback function argument
to tell the library “what to do with the elements.” For example, we have already seen one
higher-order function foreach in the Scala standard library that enables the client to perform
a side-effect for each element of a list:

List(1, 2, 3).foreach(println)

1
2
3

Note that Scala standard library chooses to define foreach as a method on objects of type
List[A].

In the following, we describe some standard higher-order functions on collections. Our intent is
to discuss the fundamental higher-order programming patterns. While the examples are drawn
from the Scala standard library, the patterns reoccur in many other contexts and languages.
We also do not intend to describe the application programming interface (API) exhaustively,
see the API documentation for that or other sources for library-specific tutorials.

24.2.1 Map

Recall that we use lists directly by pattern matching and recursion. For example, we can
define functions to increment or double each integer in a given List[Int] or to get the length
of each string in a given List[String]:

def increment(l: List[Int]): List[Int] = l match {
case Nil => Nil
case h :: t => (h + 1) :: increment(t)

}
increment(List(1, 2, 3))

defined function increment
res7_1: List[Int] = List(2, 3, 4)

279

def double(l: List[Int]): List[Int] = l match {
case Nil => Nil
case h :: t => (h * 2) :: double(t)

}
double(List(1, 2, 3))

defined function double
res8_1: List[Int] = List(2, 4, 6)

def eachLength(l: List[String]): List[Int] = l match {
case Nil => Nil
case h :: t => h.length :: eachLength(t)

}
eachLength(List("Neo", "Trinity", "Morpheus"))

defined function eachLength
res9_1: List[Int] = List(3, 7, 8)

We see that transformation pattern is very common: we want to map each element from the
input list to the corresponding element in the output list. We can implement this pattern
generically given a callback function argument f: A => B that tells us how to map an A to a
B:

def map[A, B](l: List[A])(f: A => B): List[B] = l match {
case Nil => Nil
case h :: t => f(h) :: map(t)(f)

}

defined function map

And we can then define the increment, double, and eachLength as a clients of the map
function:

def increment(l: List[Int]): List[Int] = map(l) { h => h + 1 }
increment(List(1, 2, 3))

defined function increment
res11_1: List[Int] = List(2, 3, 4)

280

def double(l: List[Int]): List[Int] = map(l) { h => h * 2 }
double(List(1, 2, 3))

defined function double
res12_1: List[Int] = List(2, 4, 6)

def eachLength(l: List[String]): List[Int] = map(l) { h => h.length }
eachLength(List("Neo", "Trinity", "Morpheus"))

defined function eachLength
res13_1: List[Int] = List(3, 7, 8)

We have abstracted all of the common boilerplate code into the definition of map and have just
what makes increment, double, and eachLength differ as the callback argument.

As noted above, the Scala standard library chooses to define these higher-order functions as
methods on the List[A] data type, so we use the built-in version of map as follows:

List(1, 2, 3).map(i => i * 3)

res14: List[Int] = List(3, 6, 9)

Note that it is idiomatic in Scala to use the binary operator form for map:

List(1, 2, 3) map { i => i * 3 }
List(1, 2, 3) map { _ * 3 }

res15_0: List[Int] = List(3, 6, 9)
res15_1: List[Int] = List(3, 6, 9)

The binary operator form yields chains reminiscent of Unix pipes:

List(1, 2, 3) map { i => i * 3 } map { i => i + 1 }
List(1, 2, 3) map { _ * 3 } map { _ + 1 }

res16_0: List[Int] = List(4, 7, 10)
res16_1: List[Int] = List(4, 7, 10)

The chain of method call form is what modern Java (and other object-oriented languages)
libraries call fluent interfaces:

281

List(1, 2, 3)
.map(i => i * 3)
.map(i => i + 1)

List(1, 2, 3)
.map(_ * 3)
.map(_ + 1)

res17_0: List[Int] = List(4, 7, 10)
res17_1: List[Int] = List(4, 7, 10)

Comprehensions

Scala has a loop-like form called a comprehension that translates to a map call:

for (i <- List(1, 2, 3)) yield i * 3
List(1, 2, 3) map { i => i * 3 }

res18_0: List[Int] = List(3, 6, 9)
res18_1: List[Int] = List(3, 6, 9)

A comprehension draws from set-comprehensions in mathematics:

{𝑖 ⋅ 3 ∣ 𝑖 ∈ {1, 2, 3}}

And Python has similar syntax for list-comprehensions:

Listing 24.1 Python

[i * 3 for i in [1, 2, 3]]

Comprehensions with constraints in mathematics and Python are also common:

{𝑖 ⋅ 3 ∣ 𝑖 ∈ {1, 2, 3} s.t. 𝑖 mod 2 = 1}

and is supported in Scala:

282

Listing 24.2 Python

[i * 3 for i in [1, 2, 3] if i % 2 == 1]

for (i <- List(1, 2, 3) if i % 2 == 1) yield i * 3

res19: List[Int] = List(3, 9)

A constraint corresponds to first applying a filter:

List(1, 2, 3) filter { i => i % 2 == 1 } map { i => i * 3 }

res20: List[Int] = List(3, 9)

Because filtering and then mapping is common, Scala implements an optimization to record
the filter to apply during the map.

List(1, 2, 3) filter { i => i % 2 == 1 }
List(1, 2, 3) filter { i => i % 2 == 1 } map { i => i }

List(1, 2, 3) withFilter { i => i % 2 == 1 }
List(1, 2, 3) withFilter { i => i % 2 == 1 } map { i => i}

res21_0: List[Int] = List(1, 3)
res21_1: List[Int] = List(1, 3)
res21_2: collection.WithFilter[Int, List[_]] = scala.collection.IterableOps$WithFilter@5181b20d
res21_3: List[Int] = List(1, 3)

The for-if-yield comprehension translates to a call of withFilter and then map:

for (i <- List(1, 2, 3) if i % 2 == 1) yield i * 3
List(1, 2, 3) withFilter { i => i % 2 == 1 } map { i => i}

res22_0: List[Int] = List(3, 9)
res22_1: List[Int] = List(1, 3)

283

Pattern Matching on the Formal Parameter

While using map, we often want to pattern match in the parameter of the callback. For
example,

List(None, Some(3), Some(4), None) map { iopt => iopt match {
case None => 0
case Some(i) => i + 1

} }

res23: List[Int] = List(0, 4, 5, 0)

We can drop the the match part to get the same behavior:

List(None, Some(3), Some(4), None) map {
case None => 0
case Some(i) => i + 1

}

res24: List[Int] = List(0, 4, 5, 0)

In actuality, the version without match the Scala syntax for defining “partial functions,” which
is a more specific version of “functions.”

24.2.2 FlatMap

A slight generalization of map and filter together is called flatMap. Compare and contrast
the type and implementations of map and flatMap:

def map[A, B](l: List[A])(f: A => B): List[B] = l match {
case Nil => Nil
case h :: t => f(h) :: map(t)(f)

}

def flatMap[A, B](l: List[A])(f: A => List[B]): List[B] = l match {
case Nil => Nil
case h :: t => f(h) ::: flatMap(t)(f)

}

284

defined function map
defined function flatMap

A flatMap takes a callback function argument f: A => List[B], allowing us to define, for
example, duplicate:

def duplicate[A](l: List[A]) = l flatMap { a => List(a, a) }
duplicate(List(1, 2, 3))

defined function duplicate
res26_1: List[Int] = List(1, 1, 2, 2, 3, 3)

The flatMap method takes its name from being a combination of map and flatten:

val mapped = List(1, 2, 3) map { a => List(a, a) }
val flattened = mapped.flatten

mapped: List[List[Int]] = List(List(1, 1), List(2, 2), List(3, 3))
flattened: List[Int] = List(1, 1, 2, 2, 3, 3)

While a direct implementation of map and filter is more efficient, we can see that flatMap
is a generalization by defining map and filter using flatMap:

Exercise 24.1. Define map in terms of flatMap.

def map[A, B](l: List[A])(f: A => B): List[B] = ???

defined function map

Exercise 24.2. Define filter in terms of flatMap.

def filter[A](l: List[A])(f: A => Boolean): List[A] = ???

defined function filter

24.2.3 FoldRight

The map and flatMap offer transformations that stay within in the List type constructor. Let
us look at examples addList and multList that summarize lists defined by direct recursion:

285

def addList(l: List[Int]): Int = l match {
case Nil => 0
case h :: t => h + addList(t)

}
addList(List(1, 2, 3, 4))

defined function addList
res30_1: Int = 10

def multList(l: List[Int]): Int = l match {
case Nil => 1
case h :: t => h * multList(t)

}
multList(List(1, 2, 3, 4))

defined function multList
res31_1: Int = 24

We recognize this summarization pattern: we use a binary operator to fold the recursively
accumulation with the current element:

def foldRight[A, B](l: List[A])(z: B)(bop: (A, B) => B): B = l match {
case Nil => z
case h :: t => bop(h, foldRight(t)(z)(bop))

}

defined function foldRight

And we can then define the addList and multList as a clients of the foldRight function:

def addList(l: List[Int]): Int = foldRight(l)(0) { (h, acc) => h + acc }
addList(List(1, 2, 3, 4))

def multList(l: List[Int]): Int = foldRight(l)(1) { (h, acc) => h * acc }
multList(List(1, 2, 3, 4))

defined function addList
res33_1: Int = 10
defined function multList
res33_3: Int = 24

286

Like map, foldRight is defined as a method on List[A] in Scala:

List(1, 2, 3, 4).foldRight(0) { (h, acc) => h + acc }
List(1, 2, 3, 4).foldRight(1) { (h, acc) => h * acc }

res34_0: Int = 10
res34_1: Int = 24

Catamorphism

Take a closer look at the foldRight implementation:

def foldRight[A, B](l: List[A])(z: B)(bop: (A, B) => B): B = l match {
case Nil => z
case h :: t => bop(h, foldRight(t)(z)(bop))

}

defined function foldRight

and we see that it abstracts exactly structural recursion over the inductive data type List[A]
where the z parameter corresponds to Nil constructor and the bop parameter to the ::
constructor. This pattern called a catamorphism can be translated into any inductive data
type that abstracts the structural recursion with a parameter for each constructor. We say
that foldRight is the catamorphism for List.

It is good practice to structural recursive functions using foldRight:

Exercise 24.3. Define map in terms of foldRight

def map[A,B](l: List[A])(f: A => B): List[B] = ???

defined function map

Exercise 24.4. Define append: (List[A], List[A]) => List[A] that appends together
two lists into one list (i.e., returns l1 follows by l2) in terms of foldRight:

def append[A](l1: List[A], l2: List[A]): List[A] = ???

defined function append

287

24.2.4 Other Folds and Reduce

With lists, we have another common pattern: tail-recursive iteration. This pattern is ab-
stracted with the foldLeft function:

def foldLeft[A, B](l: List[A])(z: B)(bop: (B, A) => B): B = {
def loop(acc: B, l: List[A]): B = l match {

case Nil => acc
case h :: t => loop(bop(acc, h), t)

}
loop(z, l)

}

defined function foldLeft

Because multiplication is associative, we can also use the tail-recursive foldLeft to multiply
the elements of an integer list:

List(1, 2, 3, 4).foldLeft(1) { (acc, h) => acc * h }

res39: Int = 24

The mnemonic for foldRight versus foldLeft is that foldRight accumulates from the right
of the list, while foldLeft accumulates from the left.

A good exercise is to write tail-recursive iteration lists functions using foldLeft.

Exercise 24.5. Define reverse of a list in terms of foldLeft.

def reverse[A](l: List[A]): List[A] = ???

defined function reverse

Reduce

When the order does not matter because the binary operator associative, using fold method
allows the library to do whatever is most efficient:

288

List(1, 2, 3, 4).fold(1)(_ * _)

res41: Int = 24

A further special case of using an associative operator binary on a non-empty list is reduce:

List(1, 2, 3, 4).reduce(_ * _)

res42: Int = 24

that picks an element as the starting accumulator.

24.3 Abstract Data Types

We have seen that Map and Set data types are unlike List are abstract data types where we
cannot get at the underlying representation. They prevent the client from direct access to
underlying balanced search tree representation to be able to maintain the balance and search
invariants, allowing for efficient key-based lookup.

At the same time, higher-order functions enables them to present the same collection view as
lists with map, flatMap, foldRight, and foldLeft:

val m = Map(2 -> List("two", "dos", "�"), 10 -> List("ten", "diez", "�"))

m: Map[Int, List[String]] = Map(
2 -> List("two", "dos", "\u4e8c"),
10 -> List("ten", "diez", "\u5341")

)

m map { case k -> words => k -> words.head }

res44: Map[Int, String] = Map(2 -> "two", 10 -> "ten")

m.foldRight(Nil: List[String]) {
case (_ -> words, acc) => words.head :: acc

}

res45: List[String] = List("two", "ten")

289

Parallel and Distributed

This decoupling of the concrete representation from the higher-order accessor view is incredibly
powerful. For example, the same client code using map and reduce on sequential collections
can be re-used by loading a parallel collections library:

Scala Parallel Collections Library

Run the following cell to load the Scala Parallel Collections library.

Listing 24.3 scala.collection.parallel.CollectionConverters._

import $ivy.`org.scala-lang.modules::scala-parallel-collections:1.0.4`, scala.collection.parallel.CollectionConverters._

import $ivy.$, scala.collection.parallel.CollectionConverters._

val par0to9999 = (0 to 9999).toList.par
val sum = par0to9999.map(_ + 1).reduce(_ + _)
assert(sum == 50005000)

par0to9999: collection.parallel.immutable.ParSeq[Int] = ParVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, ...
sum: Int = 50005000

This same idea underlies big-data applications where the library takes care of scheduling
distributed jobs with client code that also works in the small locally in memory.

290

https://github.com/scala/scala-parallel-collections

25 Exercise: Higher-Order Functions

Learning Goals

The primary learning goal of this exercise is to get experience programming with higher-order
functions.

Instructions

This assignment asks you to write Scala code. There are restrictions associated with how you
can solve these problems. Please pay careful heed to those. If you are unsure, ask the course
staff.

Note that ??? indicates that there is a missing function or code fragment that needs to be
filled in. Make sure that you remove the ??? and replace it with the answer.

Use the test cases provided to test your implementations. You are also encouraged to write
your own test cases to help debug your work. However, please delete any extra cells you may
have created lest they break an autograder.

Imports

import $ivy.$, org.scalatest._, events._, flatspec._

defined function report
defined function assertPassed
defined function passed
defined function test

291

Listing 25.1 org.scalatest._

// Run this cell FIRST before testing.
import $ivy.`org.scalatest::scalatest:3.2.19`, org.scalatest._, events._, flatspec._
def report(suite: Suite): Unit = suite.execute(stats = true)
def assertPassed(suite: Suite): Unit =
suite.run(None, Args(new Reporter {

def apply(e: Event) = e match {
case e @ (_: TestFailed) => assert(false, s"${e.message} (${e.testName})")
case _ => ()

}
}))

def passed(points: Int): Unit = {
require(points >=0)
if (points == 1) println("*** � Tests Passed (1 point) ***")
else println(s"*** � Tests Passed ($points points) ***")

}
def test(suite: Suite, points: Int): Unit = {
report(suite)
assertPassed(suite)
passed(points)

}

25.1 Collections

When working with and organizing data, we primarily use collections from Scala’s standard
library. One of the most fundamental operations that one needs to perform with a collection is
to iterate over the elements. Like many other languages with first-class functions (e.g., Python,
ML), the Scala library provides various iteration operations via higher-order functions. Higher-
order functions are functions that take functions as parameters. The function parameters are
often called callbacks, and for collections, they typically specify what the library client wants
to do for each element. We have seen examples of these functions in class. In the following
questions, we practice both writing such higher-order functions in a library and using them as
a client.

25.1.1 Lists

First, we will implement functions that eliminate consecutive duplicates of list elements. If a list
contains repeated elements they should be replaced with a single copy of the element. The order

292

of the elements should not be changed. For example, the following List(1, 2, 2, 3, 3, 3)
should be converted to List(1,2,3).

Exercise 25.1 (5 points). Write a function compressRec that implements this behavior. Im-
plement the function by direct recursion (e.g., pattern match on l and call compressRec
recursively). Do not call any List library methods.

Edit this cell:

def compressRec[A](l: List[A]): List[A] = l match {
case Nil | _ :: Nil =>

???
case h1 :: (t1 @ (h2 :: _)) =>

???
}

defined function compressRec

Notes

• This exercise is from Ninety-Nine Scala Problems. Some sample solutions are given
there, which you are welcome to view. However, we strongly recommend you attempt
this exercise before looking there. The purpose of the exercise is to get some practice
for the later part of this homework. Note that the solutions there do not satisfy the
requirements here, as they use library functions. If at some point you feel like you need
more practice with collections, this site is a good resource.

Tests

Exercise 25.2 (5 points). Write a different function compressFold that re-implements the
behavior of compressRec using the foldRight method from the List library. The call to
foldRight has been provided for you. Do not call compressFold recursively or any other
List library methods.

Edit this cell:

def compressFold[A](l: List[A]): List[A] = l.foldRight(Nil: List[A]){ (h, acc) =>
???

}

defined function compressFold

293

http://aperiodic.net/phil/scala/s-99/

Tests

Exercise 25.3 (5 points). Explain in 1–2 sentences the similarities and differences between
your two implementations: compressRec and compressFold.

Edit this cell:

???

Exercise 25.4 (5 points). Implement a higher-order recursive function mapFirst that finds
the first element of l: List[A] where f: A => Option[A] applied to it returns Some(a) for
some value a. The function should replace that element with a and leave l the same everywhere
else. For example,

mapFirst(List(1,2,-3,4,-5)) { i => if (i < 0) Some(-i) else None }

should result in List[Int] = List(1, 2, 3, 4, -5).

Edit this cell:

Tests

Exercise 25.5 (5 points). Write a function composeMap that sequentially applies a
list of functions of type A => A to all the elements of a List[A]. For example, if we
have a list of functions List(f1, f2, f3), and a list List(a, b), we want to output
List(f3(f2(f1(a))), f3(f2(f1(b)))).

Edit this cell:

def composeMap[A](functions: List[A => A])(l: List[A]): List[A] =
???

defined function composeMap

294

Tests

25.1.2 Maps

Recall the Map[A, B] data structure from class. Also, recall the higher-order function map. To
avoid confusion we will use the upper case Map to refer to the type, and the lowercase map to
refer to the higher-order function.

Exercise 25.6 (5 points). Implement a function mapValues that takes a Map[A,B] and a
callback function f: B => C, that applies f to all the values in the Map. Your function should
use the Scala collections map method. Do not use the standard library method mapValues
on Map (however, note that the behavior of your function should be exactly the same as the
mapValues standard library method).

Edit this cell:

Tests

Exercise 25.7 (5 points). As we mentioned above, we just reimplemented mapValues using
the map method from the standard library. Earlier, we implemented higher-order functions on
Lists recursively. Could we have implemented mapValues on Maps recursively? If yes, give an
example implementation. If no, explain why we cannot, and what makes Map different from
List in this case.

Edit this cell:

???

25.1.3 Trees

Recall the binary tree data type:

sealed trait Tree
case object Empty extends Tree
case class Node(l: Tree, d: Int, r: Tree) extends Tree

defined trait Tree
defined object Empty
defined class Node

295

Exercise 25.8 (10 points). Implement a higher-order function foldLeft that performs an
in-order traversal of the input t: Tree, calling the callback f starting with z to accumulate a re-
sult. For example, suppose the in-order traversal of the input tree t yields the sequence of data
values: 𝑑1, 𝑑2, … , 𝑑𝑛. Then, foldLeft(t)(z)(f) yields 𝑓(𝑓(… (𝑓(𝑓(𝑧, 𝑑1), 𝑑2)) … 𝑑𝑛−1), 𝑑𝑛)

Edit this cell:

def foldLeft[A](t: Tree)(z: A)(f: (A, Int) => A): A = {
def loop(acc: A, t: Tree): A = t match {

case Empty =>
???

case Node(l, d, r) =>
???

}
???

}

defined function foldLeft

We have provided a test client sum that computes the sum of all of the data values in the tree
using your foldLeft method, along with some helper functions to build trees more easily. Feel
free to use them to write more test cases for your code.

// An example use of foldLeft
def sum(t: Tree): Int = foldLeft(t)(0){ (acc, d) => acc + d }

// In-order insertion into a binary search tree
def insert(t: Tree, n: Int): Tree = t match {

case Empty => Node(Empty, n, Empty)
case Node(l, d, r) =>

if (n < d) Node(insert(l, n), d, r) else Node(l, d, insert(r, n))
}

// Create a tree from a list. An example use of the List.foldLeft method.
def treeFromList(l: List[Int]): Tree =
l.foldLeft(Empty: Tree){ (acc, i) => insert(acc, i) }

defined function sum
defined function insert
defined function treeFromList

296

Tests

Exercise 25.9 (10 points). Using your foldLeft function, write a client function
strictlyOrdered that checks if the data values of an in-order traversal of t are in strictly
ascending order. For example, suppose the in-order traversal of the input tree t yields
the sequence of data values: 𝑑1, 𝑑2, … , 𝑑𝑛, the strictlyOrdered should return true iff
𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛.

Edit this cell:

def strictlyOrdered(t: Tree): Boolean = {
val (b, _) = foldLeft(t)((true, None: Option[Int])) {

???
}
b

}

defined function strictlyOrdered

Tests

Now, we will write a higher-order function that uses our recent higher-order functions as a
client.

Exercise 25.10 (5 points). Implement a function foldLeftTrees that take as input a
lt: List[Tree], and applies a callback f to all of their nodes in-order (of both the List and
the nested Trees) starting with initial value z to accumulate a result.

For example, calling foldLeftTrees on

val lt =
List(

Node(Node(Empty, 1, Empty), 2, Node(Empty, 3, Empty)),
Node(Node(Empty, 4, Empty), 5, Node(Empty, 6, Empty))

)

lt: List[Node] = List(
Node(

l = Node(l = Empty, d = 1, r = Empty),
d = 2,
r = Node(l = Empty, d = 3, r = Empty)

297

),
Node(

l = Node(l = Empty, d = 4, r = Empty),
d = 5,
r = Node(l = Empty, d = 6, r = Empty)

)
)

and a function that sums integers should return 21.

Use only foldLeft on Tree that you have defined above and foldLeft on List[Tree] provided
in the Scala standard library.

Edit this cell:

def foldLeftTrees[B](lt: List[Tree])(z: B)(f: (B, Int) => B): B =
???

defined function foldLeftTrees

Tests

25.2 flatMap

Exercise 25.11 (5 points). Recall the flatMap function from class on List. Write a new
function flatMapNoRec that implements the same behavior without direct recursion; instead,
use foldRight and :::.

Edit this cell:

Tests

Now, we will try to use flatMap to do something useful.

Exercise 25.12 (5 points). Write a function getAllWords that takes in a List[String] of
sentences and returns a List[String] of all the words in the sentences. For simplicity, our sen-
tences will have no punctuation, and all words will be separated by a single space. For example,
given the input List("I love 3155", "Anish is the best TA"), the getAllWords func-
tion should return List("I", "love", "3155", "Anish", "is", "the", "best", "TA").

Use the String method split to separate a sentence into its component words:

298

"Functions are values".split(" ").toList

res22: List[String] = List("Functions", "are", "values")

Edit this cell:

Tests

299

26 Static Type Checking

When we considered just a single type (e.g., numbers) in Section 21.2, we defined a one-step
reduction relation such that for any closed expression 𝑒: either 𝑒 value (i.e., 𝑒 is a value) or
𝑒 ⟶ 𝑒′ for some 𝑒′ (i.e., 𝑒 can take a step to some 𝑒′). This property is very nice, but as
soon as we added another type of value, things got messy. We considered different possible
designs:

1. We defined conversions between different types of values (e.g., coercing values 𝑣 to num-
bers 𝑛 with the judgment form 𝑣 ⇝ 𝑛).

2. We defined dynamic type checking with the judgment form 𝑒 ⟶ 𝑟 where step-result
𝑟 ∶∶= typeerror 𝑒 ∣ 𝑒′ is either a type-error result or a one-step reduced expression.

While conversions preserve the nice property that every expression is either a value or has a
next step, a drawback with conversions is that some types of values simply do not have sensible
conversions. For example, how should the number 3 convert to a function value?

Dynamic type checking changes the judgment form 𝑒 ⟶ 𝑟 so that the next step could be to
a typeerror, but that adds complexity for identifying and propagating errors.

Either choice comes at a cost in complexity.

26.1 JavaScripty: Numbers and Functions

26.1.1 Syntax

Let us consider JavaScripty just with number literals, anonymous function literals, and function
call expressions:

values 𝑣 ∶∶= 𝑛 ∣ (𝑥) => 𝑒1
expressions 𝑒 ∶∶= 𝑛 ∣ (𝑥) => 𝑒1 ∣ 𝑥 ∣ 𝑒1(𝑒2)

variables 𝑥

Figure 26.1: Syntax of JavaScripty with number literals, function literals, and function call
expressions.

300

trait Expr // e
case class N(n: Double) extends Expr // e ::= n
case class Fun(x: String, e1: Expr) extends Expr // e ::= (x) => e1
case class Var(x: String) extends Expr // e ::= x
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

def isValue(e: Expr): Boolean = e match {
case N(_) | Fun(_, _) => true
case _ => false

}

defined trait Expr
defined class N
defined class Fun
defined class Var
defined class Call
defined function isValue

26.1.2 Small-Step Operational Semantics

The small-step operational semantics just consists of reducing function call expressions:

𝑒 ⟶ 𝑒′
DoCall

((𝑥) => 𝑒1)(𝑣2) ⟶ [𝑣2/𝑥]𝑒1

SearchCall1
𝑒1 ⟶ 𝑒′

1
𝑒1(𝑒2) ⟶ 𝑒′

1(𝑒2)

SearchCall2
𝑒2 ⟶ 𝑒′

2
𝑣1(𝑒2) ⟶ 𝑣1(𝑒′

2)

Figure 26.2: Small-step operational semantics with number literals, function literals, and func-
tion call expressions.

def subst(v: Expr, x: String, e: Expr) = {
def subst(e: Expr): Expr = e match {

case N(_) => e
case Fun(y, e1) => if (x == y) e else Fun(y, subst(e1))
case Var(y) => if (x == y) v else e
case Call(e1, e2) => Call(subst(e1), subst(e2))

}
subst(e)

}

301

def step(e: Expr): Expr = e match {
// DoCall
case Call(Fun(x, e1), v2) if isValue(v2) => subst(v2, x, e1)
// SearchCall2
case Call(v1, e2) if isValue(v1) => Call(v1, step(e2))
// SearchCall1
case Call(e1, e2) => Call(step(e1), e2)

}

defined function subst
defined function step

26.2 Getting Stuck

In Figure 26.2, we restate the small-step operational semantics rules for reducing function calls.
Observe in the DoCall rule that a reduction step only makes sense if we are calling a function
value. Otherwise, the set of rules simply say that call expressions are evaluated left-to-right
and that both the function and the argument expressions must be values before continuing to
evaluating with the body of the function. This latter choice is known as call-by-value semantics;
we will return to this notion in ?@sec-call-by-name.

Note that these rules do not say anything about how to evaluate an ill-typed expression, such
as

𝑒illtyped ∶ 3(4)

Intuitively, evaluating this expression should result in an error. We do not state this error
explicitly. Rather, we see that this is an expression that is (1) not value 𝑣 and (2) can make
no further progress (i.e., there’s no reduction rule that specifies a next-step expression 𝑒′). We
call such an expression a stuck expression, which captures the idea that it is erroneous in some
way.

In implementation, we get undefined behavior (e.g., crashing with a MatchError):

val e_illtyped = Call(N(3), N(4))

e_illtyped: Call = Call(e1 = N(n = 3.0), e2 = N(n = 4.0))

step(e_stuck)

302

26.3 Dynamic Typing

As we saw in our introduction to dynamic typing (Section 21.3), another formalization and
implementation choice would be to make such ill-typed expressions step to an error token with
an updated the judgment form 𝑒 ⟶ 𝑟:

step-results 𝑟 ∶∶= typeerror 𝑒 ∣ 𝑒′

𝑒 ⟶ 𝑟
TypeErrorCall

𝑣1 ≠ 𝑥?(𝑦) => 𝑒1
𝑣1(𝑒2) ⟶ typeerror(𝑣1(𝑒2))

PropagateCall1
𝑒1 ⟶ typeerror 𝑒

𝑒1(𝑒2) ⟶ typeerror 𝑒

PropagateCall2
𝑒2 ⟶ typeerror 𝑒

𝑣1(𝑒2) ⟶ typeerror 𝑒

Figure 26.3: Extending the small-step semantics from Figure 26.2 with dynamic type errors.

case class DynamicTypeError(e: Expr)

defined class DynamicTypeError

def step(e: Expr): Either[DynamicTypeError, Expr] = e match {
case Call(v1, v2) if isValue(v1) && isValue(v2) => v1 match {

// DoCall
case Fun(x, e1) => Right(subst(v2, x, e1))
// TypeErrorCall
case _ => Left(DynamicTypeError(e))

}
// SearchCall2 and PropagateCall2
case Call(v1, e2) if isValue(v1) => step(e2) map { e2 => Call(v1, e2) }
// SearchCall1 and PropagateCall1
case Call(e1, e2) => step(e1) map { e1 => Call(e1, e2) }

}

defined function step

303

An ill-typed function call now step to typeerror with rule TypeErrorCall. We also need to
extend rules for evaluating other all other expression forms that propagate the typeerror token if
one is encountered in searching for a redex. We show PropagateCall1 and PropagateCall2,
which are two such rules, that correspond to SearchCall1 and SearchCall2, respectively.

With this instrumentation, we distinguish a dynamic type error for any other reason for getting
stuck. For example, an expression with free variables, such as

𝑒open ∶ f(4)

should get stuck. Since our one-step evaluation relation is intended for closed expressions, we
should view this as an internal error of the interpreter implementation rather than an error in
the input program.

step(e_illtyped)

res6: Either[DynamicTypeError, Expr] = Left(
value = DynamicTypeError(e = Call(e1 = N(n = 3.0), e2 = N(n = 4.0)))

)

val e_open = Call(Var("f"), N(4))

e_open: Call = Call(e1 = Var(x = "f"), e2 = N(n = 4.0))

step(e_open)

26.4 Static Typing

We saw how “bad” expressions, such as,

𝑒illtyped ∶ 3(4)

are erroneous in that they “get stuck” according to our simpler small-step operational semantics
or result in a typeerror according to our semantics with dynamic typing. This expression is
“bad” because a call expression 𝑒1(𝑒2) is only applicable to function values. We say that such
an expression 3(4) is ill-typed or not well-typed.

A type is a classification of values that characterizes the valid operations for these values.
A type system consists of a language of types and a typing judgment that defines when an
expression has a particular type. When we say that an expression 𝑒 has a type 𝜏 (written with

304

judgment form 𝑒 ∶ 𝜏), we mean that if 𝑒 evaluates to a value 𝑣, then that value 𝑣 should be of
type 𝜏 . In this way, a type system predicts some property about how an expression evaluates
at run-time.

What is interesting is that we can design a type system to rule out ill-typed expressions before
evaluation. If we only permit well-typed expressions to run, then we can use our simpler
small-step operational semantics and know that we never get stuck getting to a value. This
observation leads to the well-known quote:

Well-typed programs can’t go wrong. — Robin Milner [3]

Correspondingly, we can use the simpler interpreter implementation and know that a crash
corresponds to an internal error of the implementation rather than an error in the input
program.

26.5 TypeScripty: Numbers and Functions

Let us consider a statically-typed language that we affectionately call TypeScripty. In fact,
like with JavaScripty and JavaScript, we make TypeScripty a subset of TypeScript whenever
possible or indicate when we make a choice to make them differ.

26.5.1 Syntax

Let us consider the abstract syntax of TypeScripty with numbers and functions:

types 𝜏, 𝑡 ∶∶= number ∣ (𝑥: 𝜏) => 𝜏 ′

values 𝑣 ∶∶= 𝑛 ∣ (𝑥: 𝜏) => 𝑒1
expressions 𝑒 ∶∶= 𝑛 ∣ (𝑥: 𝜏) => 𝑒1 ∣ 𝑥 ∣ 𝑒1(𝑒2)

Figure 26.4: Syntax of TypeScripty with number literals, function literals, and function call
expressions.

In Figure 26.4, we show a language of types 𝜏 that includes base types for numbers number
and a constructed type for function values

(𝑥: 𝜏) => 𝜏 ′

A function type (𝑥: 𝜏) => 𝜏 ′ classifies function values that has a parameter 𝑥 of type 𝜏 to
produce a return value of type 𝜏 ′. Compared with JavaScripty syntax (Figure 26.1), our
expression language 𝑒 has been modified just slightly to add type annotations to function

305

parameters. Take note of the parallel between values 𝑣 and types 𝜏—specifically, each type of
value has a form in the type language 𝜏 .

We can represent the abstract syntax of TypeScripty with functions in Scala as follows:

trait Typ // �
case object TNumber extends Typ // � ::= number
case class TFun(xt: (String, Typ), tret: Typ) extends Typ // � ::= (x: �) => �'

trait Expr // e
case class N(n: Double) extends Expr // e ::= n
case class Fun(xt: (String, Typ), e1: Expr) extends Expr // e ::= (x: �) => e1
case class Var(x: String) extends Expr // e ::= x
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

def isValue(e: Expr): Boolean = e match {
case N(_) | Fun(_, _) => true
case _ => false

}

defined trait Typ
defined object TNumber
defined class TFun
defined trait Expr
defined class N
defined class Fun
defined class Var
defined class Call
defined function isValue

For the Expr type, the only change compared with the abstract syntax representation of
JavaScripty (Section 26.1.1) is this additional Typ parameter in the Fun constructor.

26.5.2 Small-Step Operational Semantics

Let us consider the small-step operational semantics of TypeScripty with functions:

The small-step operational semantics of TypeScripty here with functions are the same as
JavaScripty with functions (Figure 26.2).

306

𝑒 ⟶ 𝑒′
DoCall

((𝑥: 𝜏) => 𝑒1)(𝑣2) ⟶ [𝑣2/𝑥]𝑒1

SearchCall1
𝑒1 ⟶ 𝑒′

1
𝑒1(𝑒2) ⟶ 𝑒′

1(𝑒2)

SearchCall2
𝑒2 ⟶ 𝑒′

2
𝑣1(𝑒2) ⟶ 𝑣1(𝑒′

2)

Figure 26.5: Small-step operational semantics of TypeScripty with number literals, function
literals, and function call expressions.

def subst(v: Expr, x: String, e: Expr) = {
def subst(e: Expr): Expr = e match {

case N(_) => e
case Fun(yt @ (y, _), e1) => if (x == y) e else Fun(yt, subst(e1))
case Var(y) => if (x == y) v else e
case Call(e1, e2) => Call(subst(e1), subst(e2))

}
subst(e)

}

def step(e: Expr): Expr = {
require(!isValue(e))
e match {

// DoCall
case Call(Fun((y, _), e1), v2) => subst(v2, y, e1)
// SearchCall2
case Call(v1, e2) if isValue(v1) => Call(v1, step(e2))
// SearchCall1
case Call(e1, e2) => Call(step(e1), e2)

}
}

defined function subst
defined function step

26.6 Typing Judgment

We want to judge when an expression 𝑒 will evaluate to a value 𝑣 of a particular type 𝜏 . We
have already seen that this judgment form

𝑒 ∶ 𝜏

307

that says, “Expression 𝑒 has type 𝜏 .” What we mean by “has type” is that the expression 𝑒
evaluates to a value of the corresponding type 𝜏 .

Like with evaluation, a typing judgment form is defined by a set of typing rules that is the
first step towards defining a type checking algorithm. Hence, typing is often called the static
semantics of a language, while evaluation is the dynamic semantics.

A type error is an expression that violates the prescribed typing rules (i.e., may produce a
value outside the set of values that it is supposed to have). We define a typing judgment form
inductively on the syntactic structure of expressions.

Recall from our earlier discussion on binding that to give a semantics and hence a type to an
expression with free variable, we need an environment. For example, consider the expression

f(4)

Is this expression well-typed? It depends. If in the environment, the variable f is stated to
have type (𝑥: number) => 𝜏 ′, then it is well-typed; otherwise, it is not. We see that the type
of an expression 𝑒 depends on a type environment Γ that gives the types of the free variables
of 𝑒:

type environments Γ, tenv ∶∶= ⋅ ∣ Γ, 𝑥 ∶ 𝜏

type TEnv = Map[String, Typ] // Γ

defined type TEnv

Thus, our typing judgment form is as follows:

Γ ⊢ 𝑒 ∶ 𝜏

that says informally, “In typing environment Γ, expression 𝑒 has type 𝜏 .” Observe how similar
this judgment form is to our big-step evaluation judgment form 𝐸 ⊢ 𝑒 ⇓ 𝑣 from Section 18.5.
This parallel is more than a mere coincidence. A standard type checker works by inferring
the type of an expression by recursively inferring the type of each sub-expression. A big-step
interpreter computes the value of an expression by recursively computing the value of each
sub-expression. In essence, we can view a type checker as an abstract evaluator over a type
abstraction of concrete values.

In Figure 26.6, we define typing of TypeScripty with number literals, function literals, and
function call expressions. The first two rules TypeNumber and TypeFunction describe the
types of values. The type of the number literal 𝑛 is number as expected. The TypeFunction
rule is more interesting:

308

Γ ⊢ 𝑒 ∶ 𝜏
TypeNumber

𝑛 ∶ number

TypeFunction
Γ, 𝑥 ∶ 𝜏 ⊢ 𝑒1 ∶ 𝜏 ′

Γ ⊢ (𝑥: 𝜏) => 𝑒1 ∶ (𝑦: 𝜏) => 𝜏 ′

TypeVar

Γ ⊢ 𝑥 ∶ Γ(𝑥)

TypeCall
Γ ⊢ 𝑒1 ∶ (𝑥: 𝜏) => 𝜏 ′ Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ 𝑒1(𝑒2) ∶ 𝜏 ′

Figure 26.6: Typing of TypeScripty with number literals, function literals, and function call
expressions.

TypeFunction
Γ, 𝑥 ∶ 𝜏 ⊢ 𝑒1 ∶ 𝜏 ′

Γ ⊢ (𝑥: 𝜏) => 𝑒1 ∶ (𝑦: 𝜏) => 𝜏 ′

A function value has a function type (𝑦: 𝜏) => 𝜏 ′ (also sometimes called simply an “arrow”
type) whose parameter type is 𝜏 and return type is 𝜏 ′. The return type 𝜏 ′ is obtained by
inferring the type of the body expression 𝑒 under the extended environment Γ, 𝑥 ∶ 𝜏 . In Type-
Script, the parameter name 𝑦 in the function type (𝑦: …) => … is essentially inconsequential
and does not need to match the parameter name 𝑥 in the function literal (𝑥: …) => ….

For a closed expression 𝑒, we write 𝑒 ∶ 𝜏 for ⋅ ⊢ 𝑒 ∶ 𝜏 , that is, well-typed with an empty type
environment:

⋅ ⊢ 𝑒 ∶ 𝜏
𝑒 ∶ 𝜏

We can translate the rules defining the typing judgment forms 𝑒 ∶ 𝜏 and Γ ⊢ 𝑒 ∶ 𝜏 into a Scala
implementation as follows:

def hastype(e: Expr): Typ = {
def hastype(tenv: TEnv, e: Expr): Typ = e match {

// TypeNumber
case N(_) => TNumber
// TypeFunction
case Fun((x,t), e1) => TFun((x,t), hastype(tenv + (x -> t), e1))
// TypeVar
case Var(x) => tenv(x)
// TypeCall
case Call(e1, e2) => hastype(tenv, e1) match {

case TFun((_,t), tret) if t == hastype(tenv, e2) => tret
}

309

}
hastype(Map.empty, e)

}

defined function hastype

To test, let us consider the ill-typed expression from above, as well as a well-typed one:

𝑒welltyped ∶ ((i: number) => i)(4) 𝑒illtyped ∶ 3(4)

val e_welltyped = Call(Fun(("i", TNumber), Var("i")), N(4))
val e_illtyped = Call(N(3), N(4))

e_welltyped: Call = Call(
e1 = Fun(xt = ("i", TNumber), e1 = Var(x = "i")),
e2 = N(n = 4.0)

)
e_illtyped: Call = Call(e1 = N(n = 3.0), e2 = N(n = 4.0))

hastype(e_welltyped)

res14: Typ = TNumber

That is, we infer that in the empty environment, e_welltyped has type TNumber, correspond-
ing to the judgment

((i: number) => i)(4) ∶ number

holding.

In the case of the ill-typed term, this implementation of hastype simply crashes with a
MatchError:

hastype(e_illtyped)

To give a better error message to the programmer, we may want to identify the unexpected,
bad type tbad for a particular sub-expression esub of input expression e:

310

case class StaticTypeError(tbad: Typ, esub: Expr, e: Expr) extends Exception {
override def toString: String = s"invalid type ${tbad} for sub-expression ${esub} in ${e}"

}

def hastype(e: Expr): Typ = {
def hastype(tenv: TEnv, e: Expr): Typ = e match {

// TypeNumber
case N(_) => TNumber
// TypeFunction
case Fun((x,t), e1) => TFun((x,t), hastype(tenv + (x -> t), e1))
// TypeVar
case Var(x) => tenv(x)
// TypeCall
case Call(e1, e2) => hastype(tenv, e1) match {

case TFun((_,t), tret) if t == hastype(tenv, e2) => tret
case tbad => throw StaticTypeError(tbad, e1, e)

}
}
hastype(Map.empty, e)

}

defined class StaticTypeError
defined function hastype

hastype(e_illtyped)

26.7 Type Soundness

Our goal has been to design a type system such that whenever we say an expression 𝑒 is well-
typed (i.e., has a type 𝜏 for some type 𝜏), then it can never get stuck in a step (i.e., 𝑒 ⟶ 𝑒′

for some reduced expression 𝑒′) in reducing to a value. This proposition is a meta-property
relating our typing judgment form 𝑒 ∶ 𝜏 and our reduction-step judgment form 𝑒 ⟶ 𝑒′ that
we break up into two parts, progress and preservation:

Proposition 26.1 (Progress). If 𝑒 ∶ 𝜏 , then 𝑒 ⟶ 𝑒′ for some expression 𝑒′.

Proposition 26.2 (Preservation). If 𝑒 ⟶ 𝑒′ and 𝑒 ∶ 𝜏 , then 𝑒′ ∶ 𝜏 .

311

If we can prove these propositions, then we say that our type system is sound, that is, it
correctly classifies expressions that on evaluation, will never get stuck or result in an error. If
our type system correctly claims that an expression 𝑒 is well-typed, then every step in iteratively
reducing 𝑒 to a value will remain well-typed according to Progress and Preservation.

While the typically production scenario is to apply type checking statically before evaluat-
ing at full speed without checking, we can operationize this property to test our interpreter
implementation. Let us instrument the reduction to a value judgment form 𝑒 ↪𝜏 𝑣 to say,
“Expression 𝑒 reduces to a value 𝑣 using some number of steps while checking the preservation
of type 𝜏 at each step.”:

𝑒 ↪𝜏 𝑣
ReducesValue
𝑒 value
𝑒 ↪𝜏 𝑒

ReducesProgressAndPreservation
𝑒 ⟶ 𝑒′ ⋅ ⊢ 𝑒′ ∶ 𝜏 𝑒′ ↪𝜏 𝑒″

𝑒 ↪𝜏 𝑒″

We define a generic iterate function and a iterateStepPAP function that implements the
𝑒 ↪𝜏 𝑣 judgment form:

def iterate[A](acc: A)(step: A => Option[A]): A = {
def loop(acc: A): A = step(acc) match {

case None => acc
case Some(acc) => loop(acc)

}
loop(acc)

}

def iterateStepPAP(e: Expr): Expr = {
// Check e is well-typed in that it doesn't throw StaticTypeError.
val ty = hastype(e)
// Iterate step while checking type preservation.
iterate(e) {

// ReducesValue
case v if isValue(v) => None
// ReducesProgressAndPreservation
case e => {

val e_ = step(e)
val ty_ = hastype(e_)
require(ty == ty_)
Some(e_)

}
}

}

312

defined function iterate
defined function iterateStepPAP

in contrast to the “production” iterateStep that type checks statically before evaluation at
full speed:

def iterateStep(e: Expr): Expr = {
// Check e is well-typed in that it doesn't throw StaticTypeError.
val _ = hastype(e)
// Iterate step at full speed.
iterate(e) {

// ReducesToValue
case v if isValue(v) => None
// ReducesToStep
case e => Some(step(e))

}
}

defined function iterateStep

They should evaluate a given expression to the same value:

val v_welltyped_step = iterateStep(e_welltyped)
val v_welltyped_steppap = iterateStepPAP(e_welltyped)
assert(v_welltyped_step == v_welltyped_steppap)

v_welltyped_step: Expr = N(n = 4.0)
v_welltyped_steppap: Expr = N(n = 4.0)

313

27 Lazy Evaluation

We have seen short-circuiting evaluation (Section 21.6), which is a particular instance of lazy
evaluation where some sub-expression is conditionally evaluated.

In this chapter, we consider call-by-name, which is another of form of lazy evaluation in defining
the semantics of function call 𝑒1(𝑒2). In contrast to call-by-value, call-by-name semantics
does not evaluate the function argument to a value before starting to evaluate the function
body. Instead, it takes the unevaluated argument expression and substitutes it for the formal
parameter.

Consider two possible DoCall rules:

DoCallByValue

((𝑥) => 𝑒1)(𝑣2) ⟶ [𝑣2/𝑥]𝑒1

DoCallByName

((𝑥) => 𝑒1)(𝑒2) ⟶ [𝑒2/𝑥]𝑒1

It is one tiny difference on paper that is a substantively different semantically. The
DoCallByValue rule requires that the argument be eagerly evaluated to a value before
applying the substitution, while the DoCallByName rule does not. Call-by-name is lazy in
that if 𝑒1 does not end up using the parameter 𝑥 in the subsequent evaluation, then 𝑒2 will
not be evaluated (i.e., like being “short-circuited”).

Formalization - formalize when an expression is reducible given the parameter passing
mode

314

28 Lab: Static Type Checking

Learning Goals

The primary goals of this lab are:

• Programming with higher-order functions.
• Static type checking and understanding the interplay between type checking and evalu-

ation.

Functional Programming Skills Higher-order functions with collections and callbacks.
Programming Language Ideas Static type checking and type safety. Records.

Instructions

A version of project files for this lab resides in the public pppl-lab4 repository. Please follow
separate instructions to get a private clone of this repository for your work.

You will be replacing ??? or case _ => ??? in the Lab4.scala file with solutions to the
coding exercises described below.

Your lab will not be graded if it does not compile. You may check compilation with
your IDE, sbt compile, or with the “sbt compile” GitHub Action provided for you. Comment
out any code that does not compile or causes a failing assert. Put in ??? as needed to get
something that compiles without error.

You may add additional tests to the Lab4Spec.scala file. In the Lab4Spec.scala, there is
empty test class Lab4StudentSpec that you can use to separate your tests from the given tests
in the Lab4Spec class. You are also likely to edit Lab4.worksheet.sc for any scratch work.
You can also use Lab4.worksheet.ts to write and experiment in a JavaScript file that you
can then parse into a TypeScripty AST (see Lab4.worksheet.sc).

If you like, you may use this notebook for experimentation. However, please make sure
your code is in Lab4.scala; code in this notebook will not graded.

315

https://github.com/csci3155/pppl-lab4

28.1 Static Typing: TypeScripty: Functions and Objects

Static Typing

As we have seen in the prior labs, dealing with coercions and checking for dynamic type errors
complicate the interpreter implementation (i.e., step). Some languages restrict the possible
programs that it will execute to ones that it can guarantee will not result in a dynamic type
error. This restriction of programs is enforced with an analysis phase after parsing but before
evalation known as type checking. Such languages are called statically-typed. In this lab, we
implement a statically-typed version of JavaScripty that we affectionately call TypeScripty.
We will not permit any type coercions and simultaneously guarantee the absence of dynamic
type errors.

Multi-Parameter Recursive Functions

Using our skills working with higher-order functions on collections from previous assignments,
we now consider functions with zero-or-more parameters (instead of exactly one):

types 𝜏 ∶∶= (𝑦: 𝜏) => 𝜏 ′

values 𝑣 ∶∶= 𝑥?(𝑦: 𝜏)𝜏? => 𝑒1
expressions 𝑒 ∶∶= 𝑥?(𝑦: 𝜏)𝜏? => 𝑒1 ∣ 𝑒1(𝑒2)

optional variables 𝑥? ∶∶= 𝑥 ∣ 𝜀
optional type annotations 𝜏? ∶∶= : 𝜏 ∣ 𝜀

We write a sequence of things using either an overbar or dots (e.g., 𝑦 or 𝑦1, … , 𝑦𝑛 for a sequence
of variables). Functions can now take any number of parameters 𝑦: 𝜏 . We have a language of
types 𝜏 and function parameters 𝑦 are annotated with types 𝜏 .

Functions can be named or unnamed 𝑥? and can be annotated with a return type or unanno-
tated 𝜏?. To define recursive functions, the function needs to be named and annotated with a
return type.

To represent an arbitrary number of function parameters or function call arguments in Scala,
we use an appropriate List:

trait Typ // t
case class TFun(yts: List[(String,Typ)], tret: Typ) extends Typ // t ::= (yts) => tret

trait Expr // e
case class Fun(xopt: Option[String], yts: List[(String,Typ)], tretopt: Option[Typ], e1: Expr) extends Expr // e ::= xopt(yts)tretopt => e1
case class Call(e0: Expr, es: List[Expr]) extends Expr // e ::= e0(es)

316

defined trait Typ
defined class TFun
defined trait Expr
defined class Fun
defined class Call

Immutable Objects (Records)

Similarly, we now consider immutable objects that can have an arbitrary number of fields:

types 𝜏 ∶∶= {𝑓: 𝜏}
values 𝑣 ∶∶= {𝑓: 𝑣}

expressions 𝑒 ∶∶= {𝑓: 𝑒} ∣ 𝑒1.𝑓

An object literal expression
{𝑓1: 𝑒1,… ,𝑓𝑛: 𝑒𝑛}

is a comma-separated sequence of field names with initialization expressions surrounded by
braces. Objects here are more like records in other programming languages compared to actual
JavaScript objects, as we do not have any form of mutation or dynamic extension. Fields here
correspond to what JavaScript calls properties but which can be dynamically added or removed
from objects. We use the term fields to emphasize that they are fixed based on their type:

{𝑓1: 𝑒1,… ,𝑓𝑛: 𝑒𝑛} ∶ {𝑓1: 𝜏1,… ,𝑓𝑛: 𝜏𝑛}

Note that an object value is an object literal expression where each field is a value:

{𝑓1: 𝑣1,… ,𝑓𝑛: 𝑣𝑛}

The field read expression 𝑒1.𝑓 evaluates 𝑒1 to an object value and then looks up the field
named 𝑓 .

To represent object types and object literal expressions in Scala, we use an appropriate Map:

case class TObj(fts: Map[String, Typ]) extends Typ // t ::= { fts }
case class Obj(fes: Map[String,Expr]) extends Expr // e ::= { fes }
case class GetField(e1: Expr, f: String) extends Expr // e ::= e1.f

defined class TObj
defined class Obj
defined class GetField

317

Otherwise, we consider our base JavaScripty language that has numbers with arithmetic expres-
sions, booleans with logic and comparison expressions, strings with concatenation, undefined
with printing, and const-variable declarations. In summary, the type language 𝜏 includes
base types for numbers, booleans, strings, and undefined, as well as constructed types for
functions and objects described above:

types 𝜏 ∶∶= number ∣ bool ∣ string ∣ Undefined
∣ (𝑦: 𝜏) => 𝜏 ′ ∣ {𝑓: 𝜏}

As an aside, we have chosen a concrete syntax that is compatible with the TypeScript language
that adds typing to JavaScript. TypeScript is a proper superset of JavaScript, so it is not as
strictly typed as TypeScripty is here in this lab.

28.2 Interpreter Implementation

We break our interpreter implementation into evaluation and type checking.

Small-Step Reduction

For evaluation, we continue with implementing a small-step operational semantics with a step
that implements a single reduction step 𝑒 ⟶ 𝑒′ on closed expressions. Because of the static
type checking, the reduction-step cases can be greatly simplified: we eliminate performing all
coercions, and what’s cool is that we no longer need to represent the possibility of a dynamic
typeerror (e.g., with a Either[DynamicTypeError,Expr]).

We can use the more basic type signature for step:

def step(e: Expr): Expr = ???

defined function step

corresponding to the more basic judgment form 𝑒 ⟶ 𝑒′ (given in the subsequent sections).

To make easier to identify implementation bugs, we introduce another Scala exception type to
throw when there is no possible next step.

case class StuckError(e: Expr) extends Exception

defined class StuckError

318

However, the intent of this exception is that it should get thrown at run-time! If it does
get thrown, that signals a bug in our interpreter implementation rather than an error in the
TypeScripty test input.

In particular, if the TypeScripty expression e passed into step is closed and well-typed (i.e.,
inferType(e) does not throw StaticTypeError), then step should never throw a StuckError.
This property is type safety.

Recall that to implement step, we need to implement a substitution function substitute
corresponding to [𝑣/𝑥]𝑒 that we use to eagerly apply variable bindings:

def substitute(v: Expr, x: String, e: Expr) = ???

defined function substitute

Static Type Checking

We implement a static type checker that up front rules out programs that would get stuck in
taking reduction steps. This type checker is very similar to a big-step interpreter. Instead of
computing the value of an expression by recursively computing the value of each sub-expression,
we infer the type of an expression, by recursively inferring the type of each sub-expression. An
expression is well-typed if we can infer a type for it.

Given its similarity to big-step evaluation, we formalize a type inference algorithm in a similar
way. That is, we define the judgment form Γ ⊢ 𝑒 ∶ 𝜏 , which says, “In type environment Γ,
expression 𝑒 has type 𝜏 .” We then implement a function hastype:

type TEnv = Map[String, Typ]
def hastype(tenv: TEnv, e: Expr): Typ = ???

defined type TEnv
defined function hastype

that corresponds directly to this judgment form. It takes as input a type environment
tenv: TEnv (Γ) and an expression e: Expr (𝑒) to return a type Typ (𝜏). It is informative to
compare the rules defining typing with a big-step operational semantics.

To signal a type error, we will use a Scala exception

case class StaticTypeError(tbad: Typ, esub: Expr, e: Expr) extends Exception

defined class StaticTypeError

319

where tbad is the type that is inferred sub-expression esub of input expression e. These
arguments are used to construct a useful error message. We also provide a helper function err
to simplify throwing this exception.

While it is possible to implement iterative reduction via step and type inference viahastype
independently, it is generally easier to “incrementally grow the language” by going language-
feature by-language-feature for all functions rather than function-by-function. In the subse-
quent steps, we describe the small-step operational semantics and the static typing semantics
together incrementally by language feature.

Notes

For testing your implementation, there are some interface functions defined that calls your
step and hastype implementations with some debugging information:

• The iterateStep: Expr => Expr function repeatedly calls your step implementation
until reaching a value.

• The inferType: Expr => Typ function calls your hastype function with an empty type
environment.

Note that the provided tests are minimal. You will want to add your own tests to cover
most language features.

28.3 Base TypeScripty

28.3.1 Small-Step Reduction

We consider the base TypeScripty that has numbers with arithmetic expressions, booleans
with logic and comparison expressions, strings with concatenation, undefined with printing,
and const-variable declarations from previous assignments and remove all coercions.

Exercise 28.1 (Small-Step Reduction for Base TypeScripty). Implement step for base Type-
Scripty following the small-step operational semantics in Figure 28.1 defining the reduction-
step judgment form 𝑒 ⟶ 𝑒′.

Note that your task here is simpler than what you have done before in previous assignments.
There are no judgment forms or rules defining coercions (e.g., toBoolean) or stepping to a
typeerror result (e.g., Left(DynamicTypeError(e))).

You will need to implement a helper function substitute for base TypeScripty to perform
scope-respecting substitution [𝑣/𝑥]𝑒 as in previous assignments.

320

𝑒 ⟶ 𝑒′

DoNeg
𝑛′ = −𝑛1
-𝑛1 ⟶ 𝑛′

DoArith
𝑛′ = 𝑛1 bop 𝑛2 bop ∈ {+, -, *, /}

𝑛1 bop 𝑛2 ⟶ 𝑛′

DoPlusString
str′ = str1str2

str1 + str2 ⟶ str′

DoInequalityNumber
𝑏′ = 𝑛1 bop 𝑛2 bop ∈ {<, <=, >, >=}

𝑛1 bop 𝑛2 ⟶ 𝑏′

DoInequalityString
𝑏′ = str1 bop str2 bop ∈ {<, <=, >, >=}

str1 bop str2 ⟶ 𝑏′

DoEquality
𝑏′ = (𝑣1 bop 𝑣2) bop ∈ {===, !==}

𝑣1 bop 𝑣2 ⟶ 𝑏′

DoNot
𝑏′ = ¬𝑏1
! 𝑏1 ⟶ 𝑏′

DoAndTrue

true && 𝑒2 ⟶ 𝑒2

DoAndFalse

false && 𝑒2 ⟶ false

DoOrTrue

true || 𝑒2 ⟶ true

DoOrFalse

false || 𝑒2 ⟶ 𝑒2

DoIfTrue

true ? 𝑒2 : 𝑒3 ⟶ 𝑒2

DoIfFalse

false ? 𝑒2 : 𝑒3 ⟶ 𝑒3

DoSeq

𝑣1 , 𝑒2 ⟶ 𝑒2

DoPrint
𝑣1 printed

console.log(𝑣1) ⟶ undefined

DoConst

const 𝑥 = 𝑣1; 𝑒2 ⟶ [𝑣1/𝑥]𝑒2

SearchUnary
𝑒1 ⟶ 𝑒′

1
uop 𝑒1 ⟶ uop 𝑒′

1

SearchBinary1
𝑒1 ⟶ 𝑒′

1
𝑒1 bop 𝑒2 ⟶ 𝑒′

1 bop 𝑒2

SearchBinary2
𝑒2 ⟶ 𝑒′

2
𝑣1 bop 𝑒2 ⟶ 𝑣1 bop 𝑒′

2

SearchIf
𝑒1 ⟶ 𝑒′

1
𝑒1 ? 𝑒2 : 𝑒3 ⟶ 𝑒′

1 ? 𝑒2 : 𝑒3

SearchPrint
𝑒1 ⟶ 𝑒′

1
console.log(𝑒1) ⟶ console.log(𝑒′

1)

SearchConst
𝑒1 ⟶ 𝑒′

1
const 𝑥 = 𝑒1; 𝑒2 ⟶ const 𝑥 = 𝑒′

1; 𝑒2

Figure 28.1: Small-step operational semantics of base TypeScripty, including numbers with
arithmetic expressions, booleans with logic and comparison expressions, strings
with concatenation, undefined with printing, and const-variable declarations.

321

Notes

• You may use (or ignore) the provided helper function doInequality to implement the
DoInequalityNumber and DoInequalityString rules.

28.3.2 Static Type Checking

We define static typing with the judgment form Γ ⊢ 𝑒 ∶ 𝜏 of base TypeScripty that has
numbers with arithmetic expressions, booleans with logic and comparison expressions, strings
with concatenation, undefined with printing, and const-variable declarations.

Observe how closely the Type rules align with the Do rules in Figure 28.1, except for having
a big-step evaluation structure with types.

Exercise 28.2 (Static Type Checking for Base TypeScripty). Implement a function hastype
for base TypeScript following the static typing semantics in Figure 28.2 defining the typing
judgment form Γ ⊢ 𝑒 ∶ 𝜏 .

type TEnv = Map[String, Typ]
def hastype(tenv: TEnv, e: Expr): Typ = ???

defined type TEnv
defined function hastype

28.4 Immutable Objects (Records)

Next, we extend our interpreter implementation for immutable objects. We consider the
implementation for immutable objects next, as it is a bit simpler than that for multi-parameter
functions.

28.4.1 Small-Step Reduction

We extend the reduction-step judgment form 𝑒 ⟶ 𝑒′ for immutable objects:

Exercise 28.3 (Small-Step Reduction for Immutable Objects). Implement the cases in step
for reducing immutable object expressions using the rules given in Figure 28.3 for the reduction-
step judgment form 𝑒 ⟶ 𝑒′.

322

Γ ⊢ 𝑒 ∶ 𝜏
TypeNumber

Γ ⊢ 𝑛 ∶ number
TypeString

Γ ⊢ str ∶ string

TypeNeg
Γ ⊢ 𝑒1 ∶ number

Γ ⊢ - 𝑒1 ∶ number

TypeArith
Γ ⊢ 𝑒1 ∶ number Γ ⊢ 𝑒2 ∶ number bop ∈ {+, -, *, /}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ number

TypePlusString
Γ ⊢ 𝑒1 ∶ string Γ ⊢ 𝑒2 ∶ string

Γ ⊢ 𝑒1 + 𝑒2 ∶ string

TypeInequalityNumber
Γ ⊢ 𝑒1 ∶ number Γ ⊢ 𝑒2 ∶ number bop ∈ {<, <=, >, >=}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ bool

TypeInequalityString
Γ ⊢ 𝑒1 ∶ string Γ ⊢ 𝑒2 ∶ string bop ∈ {<, <=, >, >=}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ bool

TypeEquality
Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏 bop ∈ {===, !==}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ bool
TypeBool

Γ ⊢ 𝑏 ∶ bool

TypeNot
Γ ⊢ 𝑒1 ∶ bool

Γ ⊢ ! 𝑒1 ∶ bool

TypeAndOr
Γ ⊢ 𝑒1 ∶ bool Γ ⊢ 𝑒2 ∶ bool bop ∈ {&&, ||}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ bool

TypeIf
Γ ⊢ 𝑒1 ∶ bool Γ ⊢ 𝑒2 ∶ 𝜏 Γ ⊢ 𝑒3 ∶ 𝜏

Γ ⊢ 𝑒1 ? 𝑒2 : 𝑒3 ∶ 𝜏
TypeUndefined

Γ ⊢ undefined ∶ Undefined

TypeSeq
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ 𝑒1 , 𝑒2 ∶ 𝜏2

TypePrint
Γ ⊢ 𝑒1 ∶ 𝜏1

Γ ⊢ console.log(𝑒1) ∶ Undefined
TypeVar

Γ ⊢ 𝑥 ∶ Γ(𝑥)

TypeConstDecl
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ const 𝑥 = 𝑒1; 𝑒2 ∶ 𝜏2

Figure 28.2: Typing of base TypeScripty, including numbers with arithmetic expressions,
booleans with logic and comparison expressions, strings with concatenation,
undefined with printing, and const-variable declarations.

323

𝑒 ⟶ 𝑒′
DoGetField

{𝑓1: 𝑣1,… ,𝑓𝑖: 𝑣𝑖,… ,𝑓𝑛: 𝑣𝑛}.𝑓𝑖 ⟶ 𝑣𝑖

SearchObject
𝑒𝑖 ⟶ 𝑒′

𝑖 𝑒𝑗 = 𝑣𝑗 for all 𝑗 < 𝑖
{𝑓1: 𝑒1,… ,𝑓𝑖: 𝑒𝑖,… } ⟶ {𝑓1: 𝑒1,… ,𝑓𝑖 : 𝑒′

𝑖,… }

SearchGetField
𝑒1 ⟶ 𝑒′

1
𝑒1.𝑓 ⟶ 𝑒′

1.𝑓

Figure 28.3: Small-step operational semantics of TypeScripty with immutable objects.

Notes

• Field names 𝑓 are different than variable names 𝑥, even though they are both represented
in Scala with a String. Object expressions are not variable binding constructs—what
does that mean about substitute for them?

• For SearchObject, you should make the reduction step apply to the first non-value as
given by the left-to-right iteration of the collection using the find method on Maps:
(m: Map[K,V]).find(f: ((K,V)) => Boolean): Option[(K,V)]

• Other helpful Scala library methods not previously mentioned to use here include the
following:
(m: Map[K,V]).get(k: K): Option[V]

28.4.2 Static Type Checking

We extend the static typing judgment form Γ ⊢ 𝑒 ∶ 𝜏 for immutable objects:

TypeObject
Γ ⊢ 𝑒𝑖 ∶ 𝜏𝑖 for all 𝑖

Γ ⊢ {… ,𝑓𝑖: 𝑒𝑖,… } ∶ {… ,𝑓𝑖: 𝜏𝑖,… }

TypeGetField
Γ ⊢ 𝑒 ∶ {… ,𝑓: 𝜏,… }

Γ ⊢ 𝑒.𝑓 ∶ 𝜏

Figure 28.4: Typing of TypeScripty with immutable objects.

Exercise 28.4 (Static Type Checking for Immutable Objects). Implement the cases in
hastype for typing immutable object expressions using the rules given in Figure 28.4 defining
the typing judgment form Γ ⊢ 𝑒 ∶ 𝜏 .

324

Notes

• Other helpful Scala library methods not previously mentioned to use here include the
following:
(m: Map[K,V]).map(f: ((K,V)) => (J,U)): Map[J,U]

28.5 Multi-Parameter Recursive Functions

Finally, we extend our interpreter implementation for multi-parameter recursive functions.

28.5.1 Small-Step Reduction

We extend the reduction-step judgment form 𝑒 ⟶ 𝑒′ for multi-paramter recursive functions:

𝑒 ⟶ 𝑒′
DoCall

((𝑦1: 𝜏1,… ,𝑦𝑛: 𝜏𝑛)𝜏? => 𝑒)(𝑣1, … 𝑣𝑛) ⟶ [𝑣1/𝑦1] ⋯ [𝑣𝑛/𝑦𝑛]𝑒

DoCallRec
𝑣 = (𝑥(𝑦1: 𝜏1,… ,𝑦𝑛: 𝜏𝑛): 𝜏 ′ => 𝑒)

𝑣(𝑣1, … 𝑣𝑛) ⟶ [𝑣/𝑥][𝑣1/𝑦1] ⋯ [𝑣𝑛/𝑦𝑛]𝑒

SearchCall1
𝑒 ⟶ 𝑒′

𝑒(𝑒1, … , 𝑒𝑛) ⟶ 𝑒′(𝑒1, … , 𝑒𝑛)

SearchCall2
𝑒𝑖 ⟶ 𝑒′

𝑖 𝑒𝑗 = 𝑣𝑗 for all 𝑗 < 𝑖
𝑣(𝑒1, … , 𝑒𝑖, … , 𝑒𝑛) ⟶ 𝑣(𝑒1, … , 𝑒′

𝑖, … , 𝑒𝑛)

Figure 28.5: Small-step operational semantics for TypeScripty with multi-parameter recursive
functions.

Exercise 28.5 (Small-Step Reduction for Multi-Parameter Recursive Functions). Implement
the cases in step for reducing multi-parameter recursive functions using the rules given in
Figure 28.5 for the reduction-step judgment form 𝑒 ⟶ 𝑒′.

Notes

• Other helpful Scala library methods not previously mentioned to use here include the
following:

325

(l: List[A]).map(f: A => B): List[B]
(l: List[A]).exists(f: A => Boolean): Boolean
(la: List[A]).zip(lb: List[B]): List[(A,B)]
(l: List[A]).forall(f: A => Boolean): Boolean
(l: List[A]).foldRight(f: (A,B) => B): B

– You may want to use the zip method for the DoCall and DoCallRec cases to
match up formal parameters and actual arguments.

• You might want to use your mapFirst function from Homework 4 here.

28.5.2 Static Type Checking

We extend the static typing judgment form Γ ⊢ 𝑒 ∶ 𝜏 for multi-parameter recursive functions:

TypeCall
Γ ⊢ 𝑒 ∶ (𝑦1: 𝜏1,… ,𝑦𝑛: 𝜏𝑛) => 𝜏 Γ ⊢ 𝑒1 ∶ 𝜏1 ⋯ Γ ⊢ 𝑒𝑛 ∶ 𝜏𝑛

Γ ⊢ 𝑒(𝑒1, … , 𝑒𝑛) ∶ 𝜏

TypeFunction
Γ, 𝑦1 ∶ 𝜏1, ⋯ , , 𝑦𝑛 ∶ 𝜏𝑛 ⊢ 𝑒′ ∶ 𝜏 ′

Γ ⊢ (𝑦: 𝜏) => 𝑒′ ∶ (𝑦: 𝜏) => 𝜏 ′

TypeFunctionAnn
Γ, 𝑦1 ∶ 𝜏1, ⋯ , , 𝑦𝑛 ∶ 𝜏𝑛 ⊢ 𝑒′ ∶ 𝜏 ′

Γ ⊢ (𝑦: 𝜏): 𝜏 ′ => 𝑒′ ∶ (𝑦: 𝜏) => 𝜏 ′

TypeFunctionRec
Γ, 𝑥 ∶ 𝜏𝑥, 𝑦1 ∶ 𝜏1, ⋯ , , 𝑦𝑛 ∶ 𝜏𝑛 ⊢ 𝑒′ ∶ 𝜏 ′ 𝜏𝑥 = (𝑦: 𝜏) => 𝜏 ′

Γ ⊢ 𝑥(𝑦: 𝜏): 𝜏 ′ => 𝑒′ ∶ 𝜏𝑥

Figure 28.6: Typing of TypeScripty with multi-parameter recursive functions.

Exercise 28.6 (Static Type Checking for Immutable Objects). Implement the cases in
hastype for typing multi-parameter recursive function expressions using the rules given in
Figure 28.6 defining the typing judgment form Γ ⊢ 𝑒 ∶ 𝜏 .

Notes

• Other helpful Scala library methods not previously mentioned to use here include the
following:

326

(l: List[A]).foldLeft(f: (B,A) => B): B
(l: List[A]).foreach(f: A => Unit): Unit
(l: List[A]).length: Int
(m1: Map[K,V]).++(m2: Map[K,V]): Map[K,V]

– The ++ method on Maps appends two Maps together.

327

29 Review: Higher-Order Functions and Static
Checking

Instructions

This assignment is a review exercise in preparation for a subsequent assessment activity.

This is a peer-quizzing activity with two students. Each section has an even number of exercises.
Student A quizzes Student B on the odd numbered exercises, and Student B quizzes Student
A on the even numbered exercises.

To the best of your ability, give feedback using the learning-levels rubric below on where your
peer is in reaching or exceeding Proficient (P) on each question live. Guidance of what a
Proficient (P) answer looks like are given.

There may or may not be a member of the course staff assigned to your slot. It is expected that
regardless of whether a member of the course staff is present, this is a peer-quizzing activity. If
a member of the course staff is present, you may ask for their help and guidance on answering
the questions and/or their assessment of where you are at in your learning level.

It is not expected that you can complete all exercises in the allotted time. You and your partner
may pick and choose which sections you want to focus on and use the remaining questions
as a study guide. You and your partner may, of course, continue working together after the
scheduled session.

At the same time, most questions can be answered in a few minutes with a Proficient (P) level
of understanding. Aim for 3–4 sections in 30 minutes.

Your submission for this session is an overall assessment of where your partner is in their
reaching-or-exceeding-proficiency level. Be constructive and honest. Neither your nor your
partners grade will depend on your learning-level assessment. Instead, your score for
this assignment will be based on the thoughtfulness of your feedback to your partner.

Submit on Gradescope as a pair. That is, use Gradescope’s group assignment feature to submit
as a group. The submission form has a spot for each of you to provide your assessment and
feedback for each other.

Please proactively fill slots with an existing sign-up to have a partner. In case your peer does
not show up to the slot, try to join another slot happening at the same time from the course
calendar. If that fails and a course staff member is present, you may do the exercise with the

328

staff member and get credit. If there is no staff member present, you may try to find a slot at
a later time if you like or else write to the Course Manager on Piazza timestamped during the
slot.

Learning-Levels Rubric

4 - Exceeding (E) Student demonstrates synthesis of the underlying concepts. Student can
go beyond merely describing the solution to explaining the underlying reasoning and
discussing generalizations.

3 - Proficient (P) Student is able to explain the overall solution and can answer specific
questions. While the student is capable of explaining their solution, they may not be
able to confidently extend their explanation beyond the immediate context.

2 - Approaching (A) Student may able to describe the solution but has difficulty answering
specific questions about it. Student has difficulty explaining the reasoning behind their
solution.

1 - Novice (N) Student has trouble describing their solution or responding to guidance. Stu-
dent is unable to offer much explanation of their solution.

29.1 Higher-Order Functions

Exercise 29.1. Suppose you have a very large list of floating-point numbers stored in a
parallel sequence, for example, ParSeq(0.1, 12, -500, 76.33, 0, -9.9). Write a function
squareRootSum that computes the sum of the square roots of all the positive numbers in this
sequence. You can use the scala.math.sqrt function to compute square roots.

import scala.math.sqrt
import $ivy.`org.scala-lang.modules::scala-parallel-collections:1.0.4`, scala.collection.parallel.ParSeq

def squareRootSum(l: ParSeq[Double]): Double = ???

import scala.math.sqrt

import $ivy.$, scala.collection.parallel.ParSeq

defined function squareRootSum

Note that ParSeq is an abstract data type that has the same higher-order iteration methods
as List.

329

A Proficient (P) answer will recall the higher-order functions filter, map, and one
of foldLeft, foldRight or reduce, and use them to filter only positive numbers,
compute the square root, and sum the list elements respectively.

def squareRootSum(l: ParSeq[Double]): Double =
l filter {_ > 0} map {sqrt} reduce {_ + _}

defined function squareRootSum

Exercise 29.2. Consider the following Scala expression. Can you figure out its type?

List(1,2,2,3,3,3,4,4,4,4).foldRight[(List[Int], List[List[Int]])]((Nil, Nil)) {
(h, acc) => acc match {

case (Nil, pacc) => (h :: Nil, pacc)
case (lacc @ (p :: _), pacc) =>

if (h == p) (h :: lacc, pacc) else (h :: Nil, lacc :: pacc)
}

}

A Proficient (P) answer will look at the value of the second case, and see that
we are always consing a List[Int] onto another list deduce that the answer is
(List[Int], List[List[Int]]).

Another Proficient (P) answer may see observe that the type argument
of foldRight is also its return type, and therefore deduce the answer is
(List[Int], List[List[Int]]).

Exercise 29.3. Consider the same Scala expression above. Explain what the foldRight call
with the given callback function does. What value will the foldRight call return?

Hint: You could step through the first several iterations of the folding function and see what
the value of acc becomes each time.

A Proficient (P) answer will recall the type deduced above, and then step
through the code and see that the left side of the accumulator remem-
bers the current list of consecutively equal-valued integers in the input,
while the right side collects such lists when the the consecutive integer val-
ues in the input differ. It will then extrapolate to get the final output of
(List(1), List(List(2, 2), List(3, 3, 3), List(4, 4, 4, 4))).

330

Selection sort is a sorting algorithm that repeatedly removes the smallest element of an un-
sorted list to create a new sorted list. In the next few exercises, we will implement selection sort
to sort a list l: List[A] by a custom specified le: (A, A) => Boolean comparison function.
The le(x,y) comparison function returns true if x is less-than-or-equal to y.

def sortBy[A](l: List[A], le: (A, A) => Boolean): List[A] = ???

defined function sortBy

Exercise 29.4. First, let’s write a function findMin to find the minimum element of l accord-
ing to le if the l is not empty. The findMin function returns None if l is Nil and otherwise
Some(a) for the minimum element according to le. Do not use recursion and instead use
higher-order iteration methods.

def findMin[A](l: List[A], le: (A, A) => Boolean): Option[A] = ???

defined function findMin

You may pattern match for Nil or use isEmpty: List[A] => Boolean to detect if l is
empty.

A Proficient (P) answer might use foldRight or foldLeft:

def findMin[A](l: List[A], le: (A, A) => Boolean): Option[A] =
l.foldRight(None: Option[A]) {

case (x, None) => Some(x)
case (x, Some(y)) => if (le(x, y)) Some(x) else Some(y)

}

defined function findMin

An Exceeding (P) answer might use reduceRight instead to apply le to each pair
of elements starting from the right, and take the minimum of them to compare to
the next one.

def findMin[A](l: List[A], le: (A, A) => Boolean): Option[A] =
if (l.isEmpty) None
else Some(l reduceRight { (x, y) => if (le(x, y)) x else y })

defined function findMin

331

Exercise 29.5. Next, write a function to remove any specified element e from l if it exists.
Again, do not use recursion and instead use higher-order iteration methods.

def removeOne[A](e: A, l: List[A]): List[A] = ???

defined function removeOne

Hint: You can write a recursive version of removeOne and then translate it into a foldRight
or foldLeft.

A Proficient (P) answer will observe that we need a flag to determine whether we
have removed an element already or not:

def removeOne[A](e: A, l: List[A]): List[A] = {
val (_, accl) = l.foldRight((false, Nil: List[A])) {

case (x, (false, accl)) if x == e => (true, accl)
case (x, (removed, accl)) => (removed, x :: accl)

}
accl

}

defined function removeOne

Exercise 29.6. Finally, combine both of these functions to complete the implementation of
sortBy. You may define sortBy using recursion.

def sortBy[A](l: List[A], le: (A, A) => Boolean): List[A] = ???

defined function sortBy

A Proficient (P) answer will combine the two functions to first find the min, put it
at the head of a list, then recursively sort the remainder of a list with that element
removed.

def sortBy[A](l: List[A], le: (A, A) => Boolean): List[A] = findMin(l, le) match {
case None => Nil
case Some(min) => min :: sortBy(removeOne(min, l), le)

}

defined function sortBy

332

29.2 Static Typing

Consider the syntax of TypeScripty with base values, functions, and immutable objects:

types 𝜏 ∶∶= number ∣ bool ∣ string ∣ Undefined
∣ (𝑦: 𝜏) => 𝜏 ′ ∣ {𝑓: 𝜏}

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑏 ∣ str ∣ undefined ∣ uop 𝑒1 ∣ 𝑒1 bop 𝑒2 ∣ ⋯
∣ (𝑦: 𝜏): 𝜏 ′ => 𝑒1 ∣ 𝑒1(𝑒2) ∣ {𝑓: 𝑒} ∣ 𝑒1.𝑓

variables 𝑥, 𝑦
fields 𝑓

numbers 𝑛
booleans 𝑏

strings str

For simplicity, observe that function literals are anonymous and always have annotated return
type.

Exercise 29.7. Define the values of this language (assuming the operational semantics is
defined via substitution).

A Proficient (P) answer states a value form for each type:

values 𝑣 ∶∶= 𝑛 ∣ 𝑏 ∣ str ∣ undefined ∣ (𝑦: 𝜏): 𝜏 ′ => 𝑒1 ∣ {𝑓: 𝑣}

An object value is one where each component of an object literal is a value.

An Exceeding (E) answer considers whether a function literal or a closure is the
value form for function types. However, because the question states the semantics
is defined via substitution, the answer can consider function literals as values.

An Exceeding (E) answer may also state that the above grammar for 𝑣 is a short-
hand for the unary judgment form 𝑒 value that is analogous to how we implement
in Scala with the isValue function:

𝑒 value
NumVal

𝑛 value

BoolVal

𝑏 value

StringVal

str value

UndefinedVal

undefined value

FunctionVal

(𝑦: 𝜏): 𝜏 ′ => 𝑒1 value

ObjectVal
𝑒1 value ⋯ 𝑒𝑛 value
{𝑓1: 𝑒1,… ,𝑓𝑛: 𝑒𝑛} value

The 𝑒 value judgment form makes it evident that with object literals, it must be
an inductively-defined relation.

333

Exercise 29.8. Give typing rules for the function and object expressions forms:

(𝑦: 𝜏): 𝜏 ′ => 𝑒1 𝑒1(𝑒2) {𝑓: 𝑒} 𝑒1.𝑓

A Proficient (P) answer gives four typing rules: one for each form (e.g.,
TypeFunction, TypeCall, TypeObject, and GetField) from the preceding
chapters.

An Exceeding (E) answer might note that with this simplified expression language
for function literals, we only need one rule for function literals (corresponding to
TypeFunctionAnn in the preceding chapters).

Exercise 29.9. Consider the following JavaScripty code:

const x = 7;
const y = "hello";
const b = x < 0;
const f = (n) => n + 5;
const test = {

a: b,
b: {z: y},
c: b,

};
test.b.z

Suppose we want to refactor it into TypeScripty. What do we need to do?

A Proficient (P) answer will recognize that we need to annotate the function literal
with types. Specifically, we need to update the line binding f as follows:

const f = (n: number): number => n + 5;

Exercise 29.10. The above code refactored into TypeScripty is well-typed. Consider this
judgment that is in a sub-derivation of type checking the above TypeScripty code:

Γ ⊢ test.b.z ∶ 𝜏

What is the type environment Γ and the result type 𝜏 for this judgment?

334

A Proficient (P) answer will recognize Γ as resulting from the const bindings:

Γ∶ x ∶ number, y ∶ string, b ∶ bool, f ∶ (n: number) => number,
test ∶ {a: bool,b: {z: string},c: bool}

which shows that 𝜏 is string.

Exercise 29.11. Now consider the following JavaScripty code snippet instead. Can we refac-
tor this code snippet to TypeScripty? If yes, give their new types. If no, explain why, and
give a possible solution.

const x = 7;
const y = "hello";
const b = x < 0;
const f = (n, m) => n + m;
const test = {

a: b,
b: {z: y},
c: b,

};
const r1 = f(test.b.z, y);
const r2 = f(1, x);
const r3 = f(test.b.z, x);

A Proficient (P) answer will note that we can no longer annotate the type of
(n, m) => n + m, since it is ambiguous whether it is concatenating strings or
adding numbers now. It should recognize that + is being used for concatenating
strings on the line binding r1, + is being used for adding numbers on the line
binding r2, and + is being used for concatenating strings with a number to string
coercion on the line binding r3. A Proficient (P) answer may say that it is not just
not possible to do this refactoring.

An Exceeding (E) answer may say that you can create two function literals
(n: number, m: number): number => n + m and (n: string, m: string): string => n + m
for the r1 and r2 lines, respectively, but (n: string, m: number): string => n + m
will not type check for the r3 line. An Exceeding (E) answer may consider the
possible solution of creating a type that includes both number and string and
update typing to allow for coercions between numbers and strings. As a comment
for an accelerated student, there are multiple ways to allow for this polymorphism,
including subtyping and union types.

Recall that our type checking rule for && and || was as follows:

335

TypeAndOr
Γ ⊢ 𝑒1 ∶ bool Γ ⊢ 𝑒2 ∶ bool bop ∈ {&&, ||}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ bool

Suppose we instead replaced this rule with the following four rules to try to more closely
match our standard small-step operational semantics (cf. Figure 28.1 in Section 28.3) that
does short-circuiting evaluation:

TypeAndFalseShort

Γ ⊢ false && 𝑒2 ∶ bool

TypeAndTrueShort
Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ true && 𝑒2 ∶ 𝜏2

TypeOrTrueShort

Γ ⊢ true || 𝑒2 ∶ bool

TypeOrFalseShort
Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ false || 𝑒2 ∶ 𝜏2

Exercise 29.12. Are these new rules unsound? Unsound means that it allows expressions
to be type-checked that would then get stuck during evaluation using our standard small-step
operational semantics (see Section 26.7 for further discussion about soundness). If you say
they are sound, explain why our standard small-step interpreter cannot get stuck. If you say
they are unsound, give an expression that type checks but would get stuck during evaluation.

A Proficient (P) answer will explain that the rules are in fact still sound because
the four rules correspond to the four Do rules that implement short-circuiting
evaluation of && and ||.

Exercise 29.13. Compare this new set of rules (i.e., TypeAndFalseShort, TypeAndTrueShort,
TypeOrTrueShort, TypeOrFalseShort) with the original set (i.e., TypeAndOr) for type
checking. Are there expressions where the old set would allow but the new rules would not?
If so, give an example expression and explain briefly. What about vice versa?

An Exceeding (E) answer will see that the expressions that can type checked with
the two sets are incomparable. For example, the false && 1 is well-typed with
the new set but not the old set. And vice versa, the (false && false) && true is
well-typed in the old set but not the new set.

A Proficient (P) answer will likely see one direction but not the other. An example
like false && 1 that is well-typed with the new set but not the old set is typically
easier to see.

336

Exercise 29.14. Suppose that our type system is sound (i.e., our judgment form Γ ⊢ 𝑒 ∶ 𝜏
is sound with respect to our small-step operational semantics 𝑒 ⟶ 𝑒′). Further suppose that
our implementations of these two judgment forms hastype and step, respectively, are correct.
Now suppose that we have a closed TypeScripty expression e that type checks with hastype
(i.e., hastype(Map.empty, e) does not throw StaticTypeError). Will iteratively running
step on e always terminate in a value, or is it still possible that it results in an error? If you
think it terminates in a value, justify why. If you think it could still encounter an error, give
an example and explain what types of errors are possible.

A Proficient (P) answer may note that there can still be other run-time issues like
division by 0 or infinite loops. Therefore, there is no guarantee that the program
will now terminate in a value.

An alternative Proficient (P) answer can state that type checking will eliminate
typing errors that would otherwise result in a StuckError or MatchError at run
time. This is what is stated as soundness in Exercise 29.12.

An Exceeding (E) answer will distinguish between typing errors that are all soundly
caught at compile time and other run-time issues like division by 0 or infinite loops.
The answer may state this is what is stated by the progress and preservation
properties of a sound type system.

337

Part VI

Imperative Computation

338

30 Encapsulating Effects

In this chapter, we explore the ideas of abstract data types further. In particular, we see that
we can generalize from collections with higher-order methods to other kinds of data structures
with such methods that intuitively encapsulate computational effects.

30.1 Abstract Data Types

Recall that an abstract data type is a data type whose representation is abstract and unavailable
to the client.

It is a concept that we have seen multiple times, for example, the Map and Set types in the Scala
standard library abstracts the interface of a mathematical finite map or a finite set, respectively,
whose actual representation is abstracted from the client of the library. This enables the library
to maintain a representation invariant on behalf of the client (e.g., representing a finite map
as a balanced binary search tree to maintain logarithmic lookup, insertion, and deletion).

We have seen that a library can provide higher-order methods to expose a view of the data
type without exposing the internal representation (see Section 24.3). For example, using the
map method on a List is a convenience

def inc(l: List[Int]): List[Int] = l.map(_ + 1)
inc(List(1, 2, 3))

defined function inc
res0_1: List[Int] = List(2, 3, 4)

over direct recursion

def inc(l: List[Int]): List[Int] = l match {
case Nil => Nil
case h :: t => (h + 1) :: inc(t)

}
inc(List(1, 2, 3))

339

defined function inc
res1_1: List[Int] = List(2, 3, 4)

The view of a Set as a collection is only accessible via map and related higher-order methods:

def inc(s: Set[Int]): Set[Int] = s.map(_ + 1)
inc(Set(1, 2, 3))

defined function inc
res2_1: Set[Int] = Set(2, 3, 4)

30.2 Error Effects

Recall that distinction between effect-free and effect-ful computation. An effect-free (or pure
or referentially transparent) computation is an evaluation of an expression that does not do
anything external to its final value, while an effect-ful (or side-effecting) computation does do
something that is not visible in its final value.

Perhaps the most basic effect is the possibility of error. For example, consider a function

toDoubleException: String => Double

that parses a string as a floating-point number and converts it into a double:

def toDoubleException(s: String): Double = s.toDouble

toDoubleException("1")
toDoubleException("4.2")

defined function toDoubleException
res3_1: Double = 1.0
res3_2: Double = 4.2

Of course, not all strings correspond to floating-point numbers, so toDoubleException throws
an exception if it is unable to recognize the string as a floating-point number:

toDoubleException("hello")

This throwing of an exception is a side-effect because it is not captured in the return type
Double. That is, all Scala expressions have the possibility of throwing an exception to bypass
the expected type of the expression, so Scala is not pure language.

340

30.2.1 Option

With some discipline, we can attempt to program in a pure subset of Scala where we make
explicit the possibility of error. For example, we can instead define

toDoubleOption: String => Option[Double]

to return an Option:

def toDoubleOption(s: String): Option[Double] =
try { Some(s.toDouble) } catch { case _: NumberFormatException => None }

toDoubleOption("1")
toDoubleOption("4.2")
toDoubleOption("hello")

defined function toDoubleOption
res5_1: Option[Double] = Some(value = 1.0)
res5_2: Option[Double] = Some(value = 4.2)
res5_3: Option[Double] = None

An Option[A] type represents an optional value, and it is often used to represent possible
error in computing a result of type A. That is, either return Some(a) of the result a of type A
or None to indicate error.

The trade-off is that working with an Option[Double] is different than working with a Double.
For example, suppose we define a function toDoubleNoNaNOption that excludes different ver-
sions of "NaN" as a string before calling toDoubleOption:

def toDoubleNoNaNOption(s: String): Option[Double] =
// Do some work: trim the spaces from the end of s
s.trim match {

// Check for an error condition: if now the string is empty
case s if s.length == 0 => None
// Continue with some work: normalize to upper case
case s => s.toUpperCase match {
// Check for an error condition: the trimmed and upper-cased string is "NAN"
case s if s == "NAN" => None
// Continue with some work: convert to an Option[Double]
case s => toDoubleOption(s)

}

341

}

toDoubleNoNaNOption("nan")
toDoubleNoNaNOption(" nan ")
toDoubleNoNaNOption("NaN")
toDoubleNoNaNOption(" NaN ")

defined function toDoubleNoNaNOption
res6_1: Option[Double] = None
res6_2: Option[Double] = None
res6_3: Option[Double] = None
res6_4: Option[Double] = None

Or as another example, suppose we define a function addToDoubleOption to convert two
floating-point strings excluding "NaN" and then add them:

def addToDoubleOption(s1: String, s2: String): Option[Double] =
toDoubleNoNaNOption(s1) match {

// If we get None, then we return None indicating error.
case None => None
// If we get Some, then we can continue to do work.
case Some(d1) => toDoubleNoNaNOption(s2) match {
// If we get None, then we return None indicating error.
case None => None
// If we get Some, then we can continue to do work.
case Some(d2) => Some(d1 + d2)

}
}

addToDoubleOption("1", "4.2")
addToDoubleOption("1", "hello")
addToDoubleOption("1", " nan")

defined function addToDoubleOption
res7_1: Option[Double] = Some(value = 5.2)
res7_2: Option[Double] = None
res7_3: Option[Double] = None

This works well in carefully avoiding errors with support from the Scala type checker to make
sure we check for None. At the same time, there is a lot of None handling scaffolding mixed in
with the “work”.

342

Now, let’s think of Option[A] as zero-or-one element list. That is, None is the zero element
list and Some(a) is the one element list with an a: A. Now, we rewrite these two functions
using the higher-order methods that we are used to using on lists:

def toDoubleNoNaNOption(s: String): Option[Double] =
Some(s)
// Do some work: trim the spaces from the end of s
.map(_.trim)
// Check for an error condition: if now the string is empty
.filter(_.length != 0)
// Continue with some work: normalize to upper case
.map(_.toUpperCase)
// Check for an error condition: the trimmed and upper-cased string is "NAN"
.filter(_ != "NAN")
// Continue with some work: convert to an Option[Double]
.flatMap(toDoubleOption(_))

defined function toDoubleNoNaNOption

def addToDoubleOption(s1: String, s2: String): Option[Double] =
toDoubleNoNaNOption(s1) flatMap { d1 =>

// If we get Some, then we can continue to do work.
toDoubleNoNaNOption(s2) map { d2 =>
// If we get Some, then we can continue to do work.
d1 + d2

}
}

addToDoubleOption("1", "4.2")
addToDoubleOption("1", "hello")
addToDoubleOption("1", " nan")

defined function addToDoubleOption
res9_1: Option[Double] = Some(value = 5.2)
res9_2: Option[Double] = None
res9_3: Option[Double] = None

Wow, the None scaffolding is gone! The None handling scaffolding is precisely what is factored
into the map, filter, and flatMap library methods. It is a good exercise to define these library
methods:

343

Exercise 30.1. Implement map for Option[A]s:

def map[A, B](opt: Option[A])(f: A => B): Option[B] = ???

defined function map

Exercise 30.2. Implement filter for Option[A]s:

def filter[A](opt: Option[A])(f: A => Boolean): Option[A] = ???

defined function filter

Exercise 30.3. Implement flatMap for Option[A]s:

def flatMap[A, B](opt: Option[A])(f: A => Option[B]): Option[B] = ???

defined function flatMap

Comprehensions

Note the pattern of using a map nested in a flatMap is so common that a for-yield ex-
pression with multiple binders translates to exactly that. So for example, we can define
addToDoubleOption as follows:

def addToDoubleOption(s1: String, s2: String): Option[Double] =
for {

d1 <- toDoubleNoNaNOption(s1)
d2 <- toDoubleNoNaNOption(s2)

} yield d1 + d2

addToDoubleOption("1", "4.2")
addToDoubleOption("1", "hello")
addToDoubleOption("1", " nan")

defined function addToDoubleOption
res13_1: Option[Double] = Some(value = 5.2)
res13_2: Option[Double] = None
res13_3: Option[Double] = None

344

We can see the sequence of binders <- corresponds to a sequential composition where we get
first the double d1 corresponding to s1 and second the double d2 corresponding to s2 to
add them. If either step errors (i.e., results in a None), then the whole for-yield expression
evaluates to None.

In either case of using flatMap and map or the for-yield expressions, we have mostly re-
covered the minimal scaffolding from effect-ful exceptions while being effect-free with explicit
Options.

30.2.2 Either

We have seen that Either[Err, A] is another data type that is often used for representing
error effects where the error-case has some data of type Err. For example, we can use an
Either to save the exception in the error case:

def toDoubleEither(s: String): Either[NumberFormatException, Double] =
try { Right(s.toDouble) } catch { case e: NumberFormatException => Left(e) }

defined function toDoubleEither

And observe the code that uses map and flatMap works with either type:

def addToDoubleEither(s1: String, s2: String): Either[NumberFormatException, Double] =
toDoubleEither(s1) flatMap { d1 =>

toDoubleEither(s2) map { d2 =>
d1 + d2

}
}

addToDoubleEither("1", "4.2")
addToDoubleEither("1", "hello")

defined function addToDoubleEither
res15_1: Either[NumberFormatException, Double] = Right(value = 5.2)
res15_2: Either[NumberFormatException, Double] = Left(
value = java.lang.NumberFormatException: For input string: "hello"

)

345

def addToDoubleEither(s1: String, s2: String): Either[NumberFormatException, Double] =
for {

d1 <- toDoubleEither(s1)
d2 <- toDoubleEither(s2)

} yield d1 + d2

addToDoubleEither("1", "4.2")
addToDoubleEither("1", "hello")

defined function addToDoubleEither
res16_1: Either[NumberFormatException, Double] = Right(value = 5.2)
res16_2: Either[NumberFormatException, Double] = Left(
value = java.lang.NumberFormatException: For input string: "hello"

)

30.2.3 Try

The Scala standard library has a data type Try specifically for representing exception effects:

import scala.util.Try
def toDoubleTry(s: String): Try[Double] =
Try(s.toDouble)

import scala.util.Try

defined function toDoubleTry

def addToDoubleTry(s1: String, s2: String): Try[Double] =
toDoubleTry(s1) flatMap { d1 =>

// If we get Success, then we can continue to do work.
toDoubleTry(s2) map { d2 =>
// If we get Success, then we can continue to do work.
d1 + d2

}
}

addToDoubleTry("1", "4.2")
addToDoubleTry("1", "hello")

346

defined function addToDoubleTry
res18_1: Try[Double] = Success(value = 5.2)
res18_2: Try[Double] = Failure(
exception = java.lang.NumberFormatException: For input string: "hello"

)

def addToDoubleTry(s1: String, s2: String): Try[Double] =
for {

d1 <- toDoubleTry(s1)
d2 <- toDoubleTry(s2)

} yield d1 + d2

addToDoubleTry("1", "4.2")
addToDoubleTry("1", "hello")

defined function addToDoubleTry
res19_1: Try[Double] = Success(value = 5.2)
res19_2: Try[Double] = Failure(
exception = java.lang.NumberFormatException: For input string: "hello"

)

30.3 Non-Determinism Effects

Another kind of effect is computation that is non-deterministic:

val rand = new scala.util.Random(0)
val r1 = rand.between(1,10)
val r2 = rand.between(1,10)
val r3 = rand.between(1,10)
val r4 = rand.between(1,10)

rand: scala.util.Random = scala.util.Random@3651e44b
r1: Int = 7
r2: Int = 8
r3: Int = 5
r4: Int = 3

While we do not necessarily see computations that return List as representing effects, we can
represent non-determinism effects with a sequence:

347

val r = List(r1, r2, r3, r4)

r: List[Int] = List(7, 8, 5, 3)

And thus computations on top of non-deterministic computations correspond to applying List
list methods. For example, let us show all pairs of results:

for {
i <- r
j <- r

} yield (i, j)

res22: List[(Int, Int)] = List(
(7, 7),
(7, 8),
(7, 5),
(7, 3),
(8, 7),
(8, 8),
(8, 5),
(8, 3),
(5, 7),
(5, 8),
(5, 5),
(5, 3),
(3, 7),
(3, 8),
(3, 5),
(3, 3)

)

30.4 Mutation Effects

The hallmark of imperative computation is mutation (or sometimes called assignment or imper-
ative update). For example, suppose we define a function freshVarImperative that creates
a globally unique variable name by keeping a counter:

348

var counter: Int = 0
def freshVarImperative: String = {

val x = s"x${counter}"
counter += 1
x

}

val x0 = freshVarImperative
val x1 = freshVarImperative
val x2 = freshVarImperative

counter: Int = 3
defined function freshVarImperative
x0: String = "x0"
x1: String = "x1"
x2: String = "x2"

To represent a mutation effect, we see that what freshVar needs is the current counter that
we view as input-output state of the freshVar function:

def freshVar: Int => (Int, String) = { counter =>
val x = s"x${counter}"
(counter + 1, x)

}

val counter = 0
val (counter_, x0) = freshVar(counter)
val (counter__, x1) = freshVar(counter_)
val (counter___, x2) = freshVar(counter__)

defined function freshVar
counter: Int = 0
counter_: Int = 1
x0: String = "x0"
counter__: Int = 2
x1: String = "x1"
counter___: Int = 3
x2: String = "x2"

We see the Int as the input-out state where a call to freshVar “updates” the state. Here,
the “state” is the Int representing the next available variable number. The contract of the

349

freshVar function is that counter on input is the next available variable number to return the
next variable name s"x${counter}". It also returns counter + 1 that is the next available
variable number, conceptually “allocating” the next variable number.

In the imperative version freshVarImperative, we have to be careful about what code mutates
counter. However, in the functional version freshVar, we have to be careful to thread the
right version of counter.

We can improve this slightly with careful use of shadowing counter:

val counter = 0
val (x0, x1, x2) = freshVar(counter) match {

case (counter, x0) => freshVar(counter) match {
case (counter, x1) => freshVar(counter) match {

case (counter, x2) => (x0, x1, x2)
}

}
}

counter: Int = 0
x0: String = "x0"
x1: String = "x1"
x2: String = "x2"

However, it is still arguably messy.

30.5 Encapsulating Mutation Effects

When there is repeated boilerplate that would be error-prone to get right each time, good
engineers will implement a library so that they can type less boilerplate and more importantly
never get it wrong.

Thus, a seemingly crazy idea is to ask, “Can we abstract a generic state-transforming function
S => (S, A) as a collection-like data type?” Let us call this data type a DoWith[S, A]:

type DoWith[S, A] = S => (S, A)

defined type DoWith

350

which is a function that returns a result of type A while computing “with” a state type S.

Observe that freshVar is a function of type DoWith[Int, String]:

freshVar: DoWith[Int, String]

res27: Int => (Int, String) = ammonite.$sess.cmd24$Helper$$Lambda$2351/0x0000000800bd3840@270c20c5

Let us see a DoWith[S, A] like a data type that stores a way to compute an A using an
input-output state of type S. We see it is like a collection similar to Option[A], List[A], or
Either[Err, A] in that we can define map:

def map[S, A, B](doer: DoWith[S, A])(f: A => B): DoWith[S, B] = { (s: S) =>
val (s_, a) = doer(s)
(s_, f(a))

}

defined function map

This map function transforms a DoWith[S, A] to a DoWith[S, B] using a callback function
f: A => B. We see that the implementation of this generic function is to create a function
that when called with an s: S, applies doer to get an updated state s_ and an a: A value
to then call f(a) to get a value of type B to return with the updated state s_. This function
implements that careful threading of state that we saw above with counter and freshVar.

And we can similarly implement a flatMap:

def flatMap[S, A, B](doer: DoWith[S, A])(f: A => DoWith[S, B]): DoWith[S, B] = { (s: S) =>
val (s_, a) = doer(s)
f(a)(s_)

}

defined function flatMap

that carefully threads the state values s and s_ of type S.

We can then use flatMap and map to create a function that threads the state of counter
through calls to freshVar that is then called with the initial counter-state of 0.

351

val counter = 0
val (counter___, (x0, x1, x2)) =
(flatMap(freshVar) { x0 =>

flatMap(freshVar) { x1 =>
map(freshVar) { x2 =>
(x0, x1, x2)

}
}

})(counter)

counter: Int = 0
counter___: Int = 3
x0: String = "x0"
x1: String = "x1"
x2: String = "x2"

Let us now implement a library class DoWith[S, A] that encapsulates a function of type
S => (S, A) with map and flatMap methods following the above:

sealed class DoWith[S, A] private (doer: S => (S, A)) {
def map[B](f: A => B): DoWith[S, B] = new DoWith[S, B]({

(s: S) => {
val (s_, a) = doer(s)
(s_, f(a))

}
})

def flatMap[B](f: A => DoWith[S, B]): DoWith[S, B] = new DoWith[S, B]({
(s: S) => {

val (s_, a) = doer(s)
f(a)(s_)

}
})

def apply(s: S): (S, A) = doer(s)
}

object DoWith {
def doget[S]: DoWith[S, S] = new DoWith[S, S]({ s => (s, s) })
def doput[S](s: S): DoWith[S, Unit] = new DoWith[S, Unit]({ _ => (s, ()) })
def doreturn[S, A](a: A): DoWith[S, A] = new DoWith[S, A]({ s => (s, a) })

352

def domodify[S](f: S => S): DoWith[S, Unit] = new DoWith[S, Unit]({ s => (f(s), ()) })
}

import DoWith._

defined class DoWith
defined object DoWith
import DoWith._

In the above definition of the DoWith[S, A] library class, we encapsulate the state-
transforming function doer: S => (S, A). We go one step further in preventing imple-
mentation errors by requiring the client create DoWith[S, A] objects using only doget,
doput, doreturn, domodify, map, and flatMap. That is, the client cannot directly construct
DoWith[S, A] objects with new because the constructor is marked private but instead has
to use one of those six methods.

The doget[S] method constructs a DoWith[S, S] that makes the “current” state the result
(i.e., s => (s, s)). Intuitively, it “gets” the state.

The doput[S](s: S) method constructs a DoWith[S, Unit] that makes the given state s the
“current” state (i.e., _ => (s, ())). Intuitively, it “puts” s into the state.

The doreturn[S, A](a: A) method constructs a DoWith[S, A] that leaves the “current”
state as-is and returns the given result a (i.e., s => (s, a)). It technically does not need to
be given in the library, as it can be defined in terms of doget and map.

The domodify[S](f: S => S) method constructs a DoWith[S, Unit] that “modifies” the
state using the given function f: S => S (i.e., s => (f(s), ())). It technically does not
need to be given in the library, as it can be defined in terms of doget, doput, and flatMap.

Let us now define freshVar as a DoWith[Int, String]:

def freshVar: DoWith[Int, String] = doget flatMap { counter =>
doput(counter + 1) map { _ => s"x${counter}" }

}

freshVar(0)

defined function freshVar
res32_1: (Int, String) = (1, "x0")

Or we can use for-yield expressions:

353

def freshVar: DoWith[Int, String] =
for {

counter <- doget
_ <- doput(counter + 1)

} yield s"x${counter}"

freshVar(0)

defined function freshVar
res33_1: (Int, String) = (1, "x0")

And we can get our three fresh variables:

val counter = 0
val (counter___, (x0, x1, x2)) =
(freshVar flatMap { x0 =>

freshVar flatMap { x1 =>
freshVar map { x2 =>
(x0, x1, x2)

}
}

})(counter)

counter: Int = 0
counter___: Int = 3
x0: String = "x0"
x1: String = "x1"
x2: String = "x2"

val counter = 0
val (counter___, (x0, x1, x2)) =
(for {

x0 <- freshVar
x1 <- freshVar
x2 <- freshVar

} yield (x0, x1, x2))(counter)

counter: Int = 0
counter___: Int = 3
x0: String = "x0"
x1: String = "x1"
x2: String = "x2"

354

Note that DoWith[S, A] is often called State[S, A] (e.g., in the Scala Cats library).

30.6 Monads

Data types Option[A], Either[Err,A], Try[A], List[A], and DoWith[S, A] are similar in
that they all have a flatMap method. Having a flatMap method corresponds to being able
to sequentially compose them:

def getOption: Option[Int] = Some(1)
def getEither: Either[String, Int] = Right(2)
def getTry: Try[Int] = Try(3)
def getList: List[Int] = List(4, 5)
def getDoWith: DoWith[String, Int] = doreturn(6)

for { i1 <- getOption; i2 <- getOption } yield (i1, i2)
for { i1 <- getEither; i2 <- getEither } yield (i1, i2)
for { i1 <- getTry; i2 <- getTry } yield (i1, i2)
for { i1 <- getList; i2 <- getList } yield (i1, i2)

val doer = for { i1 <- getDoWith; i2 <- getDoWith } yield (i1, i2)
doer("")

defined function getOption
defined function getEither
defined function getTry
defined function getList
defined function getDoWith
res36_5: Option[(Int, Int)] = Some(value = (1, 1))
res36_6: Either[String, (Int, Int)] = Right(value = (2, 2))
res36_7: Try[(Int, Int)] = Success(value = (3, 3))
res36_8: List[(Int, Int)] = List((4, 4), (4, 5), (5, 4), (5, 5))
doer: DoWith[String, (Int, Int)] = ammonite.$sess.cmd31$Helper$DoWith@2cbfa83f
res36_10: (String, (Int, Int)) = ("", (6, 6))

A type constructor M for a parametrized data type M[A] that has a flatMap method, as
well as method to construct a M[A] from an A is called a monad. We see that Option[_],
Either[Err,_], Try[_], List[_], and DoWith[S,_] are monads where we write _ for the
parametrized type.

Unfortunately, there are lots of confusing descriptions of monads out there. For our purposes,
the essence is simply observing that it is a design pattern for data types. Defining a flatMap
method

355

class M[A] {
def flatMap[B](f: A => M[B]): M[B] = ???

}

defined class M

makes it possible to sequentially compose computations using that data type.

30.6.1 Monad Interface

It is possible to take this one step further in defining an interface for a type constructor that
has a monad interface:

trait Monad[M[_]] {
def flatMap[A, B](ma: M[A])(f: A => M[B]): M[B]
def pure[A](a: A): M[A]

}

defined trait Monad

The M[_] parameter to Monad says that M is a type constructor with one parameter.

The pure[A] method injects an A into an M[A] (e.g., Some, Right, Try, List, or doreturn).

The following objects witness that Option and List satisfy the Monad interface:

object optionMonad extends Monad[Option] {
def flatMap[A, B](opt: Option[A])(f: A => Option[B]): Option[B] = opt.flatMap(f)
def pure[A](a: A): Option[A] = Some(a)

}

object listMonad extends Monad[List] {
def flatMap[A, B](l: List[A])(f: A => List[B]): List[B] = l.flatMap(f)
def pure[A](a: A): List[A] = List(a)

}

defined object optionMonad
defined object listMonad

356

We can now define functions that are generic over type constructors that satisfy the Monad
interface:

def cross[M[_], A, B](ma: M[A], mb: M[B])(m: Monad[M]): M[(A, B)] =
m.flatMap(ma) { a => m.flatMap(mb) { b => m.pure(a, b) } }

cross[Option, Int, String](Some(1), Some("hello"))(optionMonad)
cross[List, Int, String](List(2, 3), List("hola", "bonjour"))(listMonad)

defined function cross
res40_1: Option[(Int, String)] = Some(value = (1, "hello"))
res40_2: List[(Int, String)] = List(
(2, "hola"),
(2, "bonjour"),
(3, "hola"),
(3, "bonjour")

)

For a type constructor to be a proper monad, the flatMap and pure should be satisfy some
expected consistency conditions (cf. monad laws). In particular, we see that pure is a kind
of a no-op, so we should be able to remove it in a flatMap sequence without changing the
result. And since flatMap as a kind of sequencing operator, so we should be able to change
the grouping of the sequence without changing the result.

In other contexts, flatMap is sometimes called “bind” or written as the >>= operator, and
pure is sometimes called “return”.

30.6.2 Contextual Abstraction

It seems somewhat onerous to explicitly pass the optionMonad or listMonad instances to
cross when the type signature already says Option or List:

cross[Option, Int, String](Some(1), Some("hello"))(optionMonad)
cross[List, Int, String](List(2, 3), List("hola", "bonjour"))(listMonad)

res41_0: Option[(Int, String)] = Some(value = (1, "hello"))
res41_1: List[(Int, String)] = List(
(2, "hola"),
(2, "bonjour"),
(3, "hola"),
(3, "bonjour")

)

357

Scala does have an advanced feature to automatically pass particular given values of particular
types (cf. contextual parameters). In particular, we expect optionMonad and listMonad to be
the only instances of Monad[Option] and Monad[List] that would make sense, respectively.
With contextual parameters, we can instruct the Scala compiler to pass either optionMonad
or listMonad whenever an instance of type Monad[Option] or Monad[List] is needed, respec-
tively:

trait Monad[M[_]] {
def flatMap[A, B](ma: M[A])(f: A => M[B]): M[B]
def pure[A](a: A): M[A]

}

implicit object optionMonad extends Monad[Option] {
def flatMap[A, B](opt: Option[A])(f: A => Option[B]): Option[B] = opt.flatMap(f)
def pure[A](a: A): Option[A] = Some(a)

}

implicit object listMonad extends Monad[List] {
def flatMap[A, B](l: List[A])(f: A => List[B]): List[B] = l.flatMap(f)
def pure[A](a: A): List[A] = List(a)

}

defined trait Monad
defined object optionMonad
defined object listMonad

The implicit keyword states that optionMonad and listMonad are these canonical instances
of type Monad[Option] and Monad[List], respectively.

We then state that cross takes in a parameter of type Monad[M] implicitly:

def cross[M[_]: Monad, A, B](ma: M[A], mb: M[B]): M[(A, B)] = {
val m = implicitly[Monad[M]]
m.flatMap(ma) { a => m.flatMap(mb) { b => m.pure(a, b) } }

}

defined function cross

The M[_]: Monad declaration says M has a canonical Monad[M] instance that should be passed
as an argument to cross. The method call to implicitly[Monad[M]] gets that implicit pa-
rameter (though it is also possible to explicitly declare m as an implicit parameter of cross).

358

The result is that we can call cross without explicitly passing the optionMonad or listMonad
instances:

cross[Option, Int, String](Some(1), Some("hello"))
cross[List, Int, String](List(2, 3), List("hola", "bonjour"))

res44_0: Option[(Int, String)] = Some(value = (1, "hello"))
res44_1: List[(Int, String)] = List(
(2, "hola"),
(2, "bonjour"),
(3, "hola"),
(3, "bonjour")

)

Note that the implicit keyword is, unfortunately, overloaded for many things in Scala 2. This
language feature has been significantly revised and improved on in Scala 3.

359

31 Exercise: Programming with Encapsulated
Effects

Learning Goals

The primary learning goal of this exercise is to get experience programming with encapsulated
effects.

We will also consider the idea of transforming code represented as an abstract syntax tree to
make it easier to implement subsequent passes like interpretation.

Instructions

This assignment asks you to write Scala code. There are restrictions associated with how you
can solve these problems. Please pay careful heed to those. If you are unsure, ask the course
staff.

Note that ??? indicates that there is a missing function or code fragment that needs to be
filled in. Make sure that you remove the ??? and replace it with the answer.

Use the test cases provided to test your implementations. You are also encouraged to write
your own test cases to help debug your work. However, please delete any extra cells you may
have created lest they break an autograder.

Imports

import $ivy.$, org.scalatest._, events._, flatspec._, matchers.should._

import $ivy.$, org.scalatestplus.scalacheck._

defined function report
defined function assertPassed
defined function passed
defined function test

360

Listing 31.1 org.scalatest._

// Run this cell FIRST before testing.
import $ivy.`org.scalatest::scalatest:3.2.19`, org.scalatest._, events._, flatspec._, matchers.should._
import $ivy.`org.scalatestplus::scalacheck-1-18:3.2.19.0`, org.scalatestplus.scalacheck._
def report(suite: Suite): Unit = suite.execute(stats = true)
def assertPassed(suite: Suite): Unit =
suite.run(None, Args(new Reporter {

def apply(e: Event) = e match {
case e @ (_: TestFailed) => assert(false, s"${e.message} (${e.testName})")
case _ => ()

}
}))

def passed(points: Int): Unit = {
require(points >= 0)
if (points == 1) println("*** � Tests Passed (1 point) ***")
else println(s"*** � Tests Passed ($points points) ***")

}
def test(suite: Suite, points: Int): Unit = {
report(suite)
assertPassed(suite)
passed(points)

}

31.1 TypeScripty: Numbers, Booleans, and Functions

31.1.1 Syntax

In this assignment, we consider a simplified TypeScripty with numbers, booleans, and functions
types.

Function literals 𝑥(𝑦: 𝜏): 𝜏 ′ => 𝑒1 have exactly one parameter, are always named, and must
have a return type annotation. The name may be used to define recursive functions.

The expressions include variable uses 𝑥, variable binding const 𝑥 = 𝑒1; 𝑒2, unary uop 𝑒1 and
binary 𝑒1 bop 𝑒2 expressions, if-then-else 𝑒1 ? 𝑒2 : 𝑒3, and function call 𝑒1(𝑒2). The unary
operators are limited to number negation - and boolean negation !, and the binary operators
are limited to number addition +, number times *, and equality ===:

We give a Scala representation of the abstract syntax, along with an implementation of com-
puting the free variables of an expression and determining an expression is closed:

361

types 𝜏 ∶∶= number ∣ bool ∣ (𝑦: 𝜏) => 𝜏 ′

values 𝑣 ∶∶= 𝑛 ∣ 𝑏 ∣ 𝑥(𝑦: 𝜏): 𝜏 ′ => 𝑒1
expressions 𝑒 ∶∶= 𝑥 ∣ const 𝑥 = 𝑒1; 𝑒2

∣ 𝑛 ∣ uop 𝑒1 ∣ 𝑒1 bop 𝑒2
∣ 𝑏 ∣ 𝑒1 ? 𝑒2 : 𝑒3
∣ 𝑥(𝑦: 𝜏): 𝜏 ′ => 𝑒1 ∣ 𝑒1(𝑒2)

unary operators uop ∶∶= - ∣ !
binary operators bop ∶∶= + ∣ * ∣ ===

Figure 31.1: Syntax of TypeScripty with recursive functions and limited arithmetic-logical ex-
pressions.

trait Typ // t
case object TNumber extends Typ // t ::= number
case object TBool extends Typ // t ::= bool
case class TFun(yt: (String,Typ), tret: Typ) extends Typ // t ::= (y: t) => tret

trait Expr // e
case class Var(x: String) extends Expr // e ::= x
case class ConstDecl(x: String, e1: Expr, e2: Expr) extends Expr // e ::= const x = e1; e2

case class N(n: Double) extends Expr // e ::= n
case class Unary(uop: Uop, e1: Expr) extends Expr // e ::= uop e1
case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr // e ::= e1 bop b2

case class B(b: Boolean) extends Expr // e ::= b
case class If(e1: Expr, e2: Expr, e3: Expr) extends Expr // e ::= e1 ? e2 : e3

case class Fun(x: String, yt: (String, Typ), tret: Typ, e1: Expr) extends Expr // e ::= x(y: t): tret => e1
case class Call(e1: Expr, e2: Expr) extends Expr // e ::= e1(e2)

trait Uop // uop
case object Neg extends Uop // uop ::= -
case object Not extends Uop // uop ::= !

trait Bop // bop
case object Plus extends Bop // bop ::= *
case object Times extends Bop // bop ::= *
case object Eq extends Bop // bop ::= ===

362

def freeVars(e: Expr): Set[String] = e match {
case Var(x) => Set(x)
case ConstDecl(x, e1, e2) => freeVars(e1) | (freeVars(e2) - x)
case N(_) | B(_) => Set.empty
case Unary(_, e1) => freeVars(e1)
case Binary(_, e1, e2) => freeVars(e1) | freeVars(e2)
case If(e1, e2, e3) => freeVars(e1) | freeVars(e2) | freeVars(e3)
case Fun(x, (y, _), _, e1) => freeVars(e1) - x - y
case Call(e1, e2) => freeVars(e1) | freeVars(e2)

}

def isClosed(e: Expr): Boolean = freeVars(e).isEmpty

defined trait Typ
defined object TNumber
defined object TBool
defined class TFun
defined trait Expr
defined class Var
defined class ConstDecl
defined class N
defined class Unary
defined class Binary
defined class B
defined class If
defined class Fun
defined class Call
defined trait Uop
defined object Neg
defined object Not
defined trait Bop
defined object Plus
defined object Times
defined object Eq
defined function freeVars
defined function isClosed

31.1.2 Static Type Checking

The typing judgment Γ ⊢ 𝑒 ∶ 𝜏 says, “In typing environment Γ, expression 𝑒 has type 𝜏” where
the typing environment Γ ∶∶= ⋅ ∣ Γ, 𝑥 ∶ 𝜏 is a finite map from variables to types, assigning

363

types to the free variables of 𝑒. We give the expected typing rules that we have seen before,
restricted to this simpler language:

Γ ⊢ 𝑒 ∶ 𝜏
TypeVar

Γ ⊢ 𝑥 ∶ Γ(𝑥)

TypeConstDecl
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ const 𝑥 = 𝑒1; 𝑒2 ∶ 𝜏2

TypeNumber

Γ ⊢ 𝑛 ∶ number

TypeNeg
Γ ⊢ 𝑒1 ∶ number

Γ ⊢ - 𝑒1 ∶ number

TypeArith
Γ ⊢ 𝑒1 ∶ number Γ ⊢ 𝑒2 ∶ number bop ∈ {+, *}

Γ ⊢ 𝑒1 bop 𝑒2 ∶ number
TypeBool

Γ ⊢ 𝑏 ∶ bool

TypeEq
Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ 𝑒1 === 𝑒2 ∶ bool

TypeIf
Γ ⊢ 𝑒1 ∶ bool Γ ⊢ 𝑒2 ∶ 𝜏 Γ ⊢ 𝑒3 ∶ 𝜏

Γ ⊢ 𝑒1 ? 𝑒2 : 𝑒3 ∶ 𝜏

TypeFunctionRec
Γ, 𝑥 ∶ (𝑦: 𝜏) => 𝜏 ′, 𝑦 ∶ 𝜏 ⊢ 𝑒′ ∶ 𝜏 ′

Γ ⊢ 𝑥(𝑦: 𝜏): 𝜏 ′ => 𝑒′ ∶ (𝑦: 𝜏) => 𝜏 ′

TypeCall
Γ ⊢ 𝑒1 ∶ (𝑦: 𝜏) => 𝜏 ′ Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ 𝑒1(𝑒2) ∶ 𝜏 ′

Figure 31.2: Typing of TypeScripty with recursive functions and limited arithmetic-logical
expressions.

31.2 Error Effects

As we have seen, the most direct way to implement a type checker following the typing judg-
ment Γ ⊢ 𝑒 ∶ 𝜏 is a function hastype: (Map[String, Typ], Expr) => Typ that takes an
typing environment Γ represented by a Map[String, Typ] and an expression 𝑒 represented
by a Expr and returns a type 𝜏 represented by a Typ:

def hastype(tenv: Map[String, Typ], e: Expr): Typ = ???

However, with this function signature for hastype, we necessarily have to throw an exception
or crash to indicate that an expression 𝑒 is ill-typed. An expression is ill-typed when there are
no rules that allow us to derive a judgment Γ ⊢ 𝑒 ∶ 𝜏 for any 𝜏 and Γ.

In this exercise, we implement a version of hastype that makes explicit the possibility of a
type error.

364

31.2.1 Type-Error Result

We first extend our typing judgment form Γ ⊢ 𝑒 ∶ 𝑟 where a type-checker result 𝑟 is either a
type 𝜏 or a type-error result typerr:

type-checker result 𝑟 ∶∶= typerr ∣ 𝜏 type-error result typerr ∶∶= typerr(𝑒 ∶ 𝜏)

This extended judgment form makes explicit when an expression is ill-typed. A type-error
result

typerr(𝑒 ∶ 𝜏)

includes an expression 𝑒 with its inferred type 𝜏 but is used in a context another type is
expected. We can consider such a type-error result being used to give a descriptive error
message to the programmer.

We now give some rules that introduce type-error results and propagates them:

Γ ⊢ 𝑒 ∶ 𝑟
TypeErrorNeg
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ≠ number

Γ ⊢ - 𝑒1 ∶ typerr(𝑒1 ∶ 𝜏1)

PropagateNeg
Γ ⊢ 𝑒1 ∶ typerr

Γ ⊢ - 𝑒1 ∶ typerr

TypeErrorEq
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2 𝜏1 ≠ 𝜏2

Γ ⊢ 𝑒1 === 𝑒2 ∶ typerr(𝑒2 ∶ 𝜏2)

PropagateEq1
Γ ⊢ 𝑒1 ∶ typerr

Γ ⊢ 𝑒1 === 𝑒2 ∶ typerr

PropagateEq2
Γ ⊢ 𝑒2 ∶ typerr

Γ ⊢ 𝑒1 === 𝑒2 ∶ typerr

Observe that the TypeErrorEq blames 𝑒2: it infers the type 𝜏1 for 𝑒1 and then expects that
𝑒2 has type 𝜏1.

Exercise 31.1 (4 points). Define the TypeErrorNot rule that introduces a type-error result
when the boolean negation expression ! 𝑒1 is ill-typed:

Edit this cell:

???

365

Notes

• Hint: Use TypeErrorNeg as a model.
• You may give the rule in LaTeX math or as plain text (ascii art) approximating the math

rendering. For example,

TypeErrorNeg
Gamma |- e1 : tau1 tau1 != number
--
Gamma |- -e1 : typerr(e1 : tau1 != number)

The LaTeX code for the rendered TypeErrorNeg rule above is as follows:

\inferrule[TypeErrorNeg]{
\Gamma \vdash e_1 : \tau_1
\and
\tau_1 \neq \texttt{number}

}{
\Gamma \vdash \mathop{\texttt{-}} e_1 : \mathop{\mathsf{typerr}}(e_1 : \tau_1 \neq \texttt{number})

}

Exercise 31.2 (8 points). Define two TypeErrorIf rules that introduces a type-error result
when the if-then-else expression 𝑒1 ? 𝑒2 : 𝑒3 is ill-typed:

Edit this cell:

???

Notes

• Hint: Use TypeErrorNeg and TypeErrorEq as a model for the two rules, respectively.

31.2.2 Implementation

We represent a type-error result 𝑟 as an Either[StaticTypeError, Typ].

Exercise 31.3 (26 points). Complete the following implementation of

hastype: (Map[String, Typ], Expr) => Either[StaticTypeError, Typ]

corresponding to the judgment form Γ ⊢ 𝑒 ∶ 𝑟.

366

Edit this cell:

case class StaticTypeError(tbad: Typ, esub: Expr, e: Expr) {
override def toString = s"StaticTypeError: invalid type $tbad for sub-expression $esub in $e"

}

def hastype(tenv: Map[String, Typ], e: Expr): Either[StaticTypeError, Typ] = {

def err[T](esub: Expr, tgot: Typ): Either[StaticTypeError, T] =
Left(StaticTypeError(tgot, esub, e))

def typecheck(tenv: Map[String, Typ], e: Expr, tshould: Typ): Either[StaticTypeError, Unit] =
hastype(tenv, e) flatMap { tgot =>

if (tgot == tshould)
???

else err(e, tgot)
}

e match {
case Var(x) => Right(tenv(x))
case ConstDecl(x, e1, e2) =>
???

case N(_) => Right(TNumber)
case B(_) => Right(TBool)
case Unary(Neg, e1) => typecheck(tenv, e1, TNumber) map { _ => TNumber }
case Unary(Not, e1) =>
???

case Binary(Plus|Times, e1, e2) =>
???

case Binary(Eq, e1, e2) =>
hastype(tenv, e1) flatMap { t1 =>
hastype(tenv, e2) flatMap { t2 =>

if (t1 == t2) Right(TBool) else err(e2, t2)
}

}
case If(e1, e2, e3) => typecheck(tenv, e1, TBool) flatMap { _ =>
???

}
case Fun(x, yt @ (y, t), tret, e1) => {
???

}
case Call(e1, e2) =>
???

367

}
}

def inferType(e: Expr): Either[StaticTypeError, Typ] = {
require(isClosed(e), s"$e should be closed")
hastype(Map.empty, e)

}

defined class StaticTypeError
defined function hastype
defined function inferType

Notes

• The err helper function is simply a shortcut to construct StaticTypeError with the
input expression e.

• The typecheck helper function implements a common functionality where we want to
call hastype recursively with a sub-expression to infer a type tgot and check it is equal
to an expected type tshould. If tgot != tshould, we return an err; otherwise, we
return success.

• Hint: Start by implementing the Type rules from Figure 31.2 without worrying about
type errors. Then, add TypeError and Propagate cases.

• Note that not all the TypeError and Propagate rules are given, but they follow the
patterns given above. If you get stuck to implement the code for TypeError for a
particular construct, try writing out the rule.

• It is fine to initially pattern match on Either[StaticTypeError, Expr] values that
result from calls to hastype and typecheck (i.e., for Left and Right values). However,
challenge yourself to replace them with map or flatMap calls to minimize your typing
and opportunities for bugs to creep in. It is possible to replace all pattern matches for
Left and Right values with calls to map and flatMap calls.

• Use the given cases (e.g., TypeNeg, TypeErrorNeg, PropagateNeg) as a model. Iden-
tify how TypeNeg, TypeErrorNeg, and PropagateNeg manifests in the code.

• For accelerated students, you can make the code even more compact (and arguably more
readable) by replacing flatMap and map calls with for-yield expressions. Note that not
all cases can be implemented with for-yield expressions.

368

Tests

31.3 Mutation Effects

31.3.1 Defining Generic DoWith Methods

Recall the idea of encapulating a state transforming function S => (S, A) as a collection-like
data type (Section 30.5), which we call a DoWith[S, A]:

sealed class DoWith[S, A] private (doer: S => (S, A)) {
def map[B](f: A => B): DoWith[S, B] = new DoWith[S, B]({

(s: S) => {
val (s_, a) = doer(s)
(s_, f(a))

}
})

def flatMap[B](f: A => DoWith[S, B]): DoWith[S, B] = new DoWith[S, B]({
(s: S) => {

val (s_, a) = doer(s)
f(a)(s_)

}
})

def apply(s: S): (S, A) = doer(s)
}

object DoWith {
def doget[S]: DoWith[S, S] = new DoWith[S, S]({ s => (s, s) })
def doput[S](s: S): DoWith[S, Unit] = new DoWith[S, Unit]({ _ => (s, ()) })

}

import DoWith._

defined class DoWith
defined object DoWith
import DoWith._

Consider a DoWith[S,A] as a “collection” holding an A somewhat like List[A] or Option[A].
While List[A] encapsulates a sequence of elements of type A elements and Option[A] encap-
sulates an optional A, a DoWith[S, A] encapsulates a computation that results in an A, using

369

an input-output state S (i.e., a S => (S, A) function). It is collection-like because it also has
map and flatMap methods to transform that computation.

We also define two functions for a client to create a DoWith[S, A] encapsulating particular S
=> (S, A){.scala functions}:

• The doget[S] method constructs a DoWith[S, S] that makes the “current” state the
result (i.e., s => (s, s)). Intuitively, it “gets” the state.

• The doput[S](s: S) method constructs a DoWith[S, Unit] that makes the given state
s the “current” state (i.e., _ => (s, ())). Intuitively, it “puts” s into the state.

We require the client to create DoWith[S, A] values using only the doget and doput construc-
tors.

Exercise 31.4 (4 points). Read the implementations map[B] and flatMap[B] methods of
DoWith[S, A] above. Explain how they transform the encapsulated doer: S => (S, A)
function. Compare and contrast them—what do they do that is same, and what is the key
difference between them?

Edit this cell:

???

As a DoWith[S, A] encapsulates any function of type S => (S, A), there are other com-
monly needed functions of this type. We implement methods for constructing DoWith[S, A]
encapsulating two more commonly-needed computations in terms of doget and doput.

• The doreturn[S, A](a: A) method constructs a DoWith[S, A] that leaves the “cur-
rent” state as-is and returns the given result a (i.e., s => (s, a)). It technically does
not need to be given in the library, as it can be defined in terms of doget and map.

• The domodify[S](f: S => S) method constructs a DoWith[S, Unit] that “modifies”
the state using the given function f: S => S (i.e., s => (f(s), ())). It technically
does not need to be given in the library, as it can be defined in terms of doget, doput,
and flatMap.

Exercise 31.5 (4 points). Implement doreturn[S, A](a: A) that creates a DoWith[S,
A] that encapsulates the computation (s: S) => (s, a) using doget, doput, map, and/or
flatMap.

Edit this cell:

def doreturn[S, A](a: A): DoWith[S, A] =
???

defined function doreturn

370

Tests

Exercise 31.6 (4 points). Implement domodify[S](f: S => S) that creates a DoWith[S,
Unit] that encapsulates the computation (s: S) => (f(s), ()) using doget, doput, map,
and/or flatMap.

Edit this cell:

def domodify[S](f: S => S): DoWith[S, Unit] =
???

defined function domodify

Notes

• Hint: To define doreturn and domodify, it might help first to do type-directed program-
ming where you ignore what a DoWith[S, A] actually is and think of it as Either[S, A]
or abstractly as M[S, A] for an unknown type constructor M. There only limited things
you can do by composing doget, doput, map, and flatMap.

Tests

31.3.2 Renaming Bound Variables

Recall that with static scoping, we see expressions as being equivalent up to the renaming of
bound variables (Section 14.7). For example, we see the following two expressions as being
equivalent for the purposes of the language implementation:

const four = (2 + 2); (four + four)

const x = (2 + 2); (x + x)

even though the concrete syntax for the human user is different in their choice of variable
names.

While being able to choose variable names that shadows another variable is important for the
human user, we have seen that clashing variable names adds complexity to the language imple-
mentation. For example, mishandling of clashing variable names results in accidental dynamic
scoping (Section 19.2) and substitution has to account for variable shadowing (Section 21.9).

371

Observing that renaming bound variables preserves meaning for the language implementation,
one approach for simplifying the handling of variable scope is to implement a lowering pass that
renames bound variables in a consistent manner so that variable names are globally unique.
For example, we could lower the following expression

const a = ((a) => a)(1) + ((a) => a)(2); a

by renaming bound variables to, for example,

const a_0 = ((a_1) => a_1)(1) + ((a_2) => a_2)(2); a_0

We will implement the above lowering pass in a few steps.

Exercise 31.7 (4 points). Write a function freshVar(x: String) that returns a function of
type Int => (Int, String), which takes a current index-state i: Int and returns the pair
of the next index state i + 1 and the string x with the index appended and separated by "_"
(specifically, s"${x}_${i}"):

Edit this cell:

def freshVar(x: String): Int => (Int, String) =
{ i =>

???
}

defined function freshVar

Tests

Aside: Writing lots of tests is painful. In the above, we use an idea called property-based testing
to make it less painful and more effective. A property-based testing library enables specifying
a property on inputs like in the above for x: String and i: Int, and the library will choose
lots of random inputs with which to check the property. Importantly, the library also enables
the client to specify how to generate inputs (e.g., what range, what distribution), though we
do not do anything special to control the input generation in the above.

Exercise 31.8 (4 points). Write a function freshVarWith(x: String): DoWith[Int, String]
that behaves like freshVar(x: String): Int => (Int, String) in Exercise 31.7.

Edit this cell:

372

def freshVarWith(x: String): DoWith[Int, String] =
???

defined function freshVarWith

Notes

• Hint: Remember that DoWith[Int, String] encapsulates a function of type
Int => (Int, String). Use freshVar as a guide to creating the DoWith[Int,
String] using doget, doput, map, and/or flatMap.

• For accelerated students, you may try to use a for-yield expression to replace your map
and flatMap calls.

A lowering pass is a transformation function from Expr => Expr. To rename bound vari-
ables in a consistent manner, we need an enviroment to remember what the name should
be for a free variable use in the input Expr. Thus, we need to define a helper function
rename(env: Map[String, String], e: Expr) that takes as input an env: Map[String,
String] that maps original names to new names for the free variable uses in e.

We also need a way to choose how to rename bound variables so that they are unique. The
client of rename might want to rename variables uniquely in different ways (e.g., using an
integer counter, using the original name with an integer counter). Thus, we add an additional
callback parameter

fresh: String => DoWith[S, String]

for the client to specify how they want to specify the fresh name given the original name where
they can choose a state type S to use through renaming.

Tests

Exercise 31.9 (24 points). Implement a function rename that renames variable names in e
consistently using the given callback to fresh to generate fresh names for bound variables and
env to rename free variable uses.

Edit this cell:

373

Notes

• Hint: Use the given cases for N and Call as models. The only methods for manipulating
DoWith objects needed in this exercise are doreturn, map, and flatMap.

• Accelerated: You may try to use for-yield expressions to replace your map and
flatMap calls.

31.3.3 Test

Exercise 31.10 (4 points). Finally, implement the lowering-transformation function
uniquify: Expr => Expr on closed expressions using a call to rename to rename bound
variables consistently with the freshVarWith: String => DoWith[Int, String] function
defined above. Start the Int counter-state at 0.

Edit this cell:

Notes

• Hint: The rename and freshVarWith functions constructs DoWith objects. The
uniquify finally uses a DoWith[Int, String] object. How? By calling it with the
initial state 0.

Test

31.3.4 DoWith with Collections

Recall the higher-order function map we considered previously for Lists.

def map[A, B](l: List[A])(f: A => B): List[B] =
l.foldRight[List[B]](

Nil
) { (h, acc) =>

f(h) :: acc
}

defined function map

We may want to use DoWith to encapsulate some stateful computation with other data struc-
tures, like Lists. For example, we want a version of map that can take a stateful callback:

374

Exercise 31.11 (4 points). Implement a function mapWith for List that takes a stateful
callback function f: A => DoWith[S, B]:

Edit this cell:

def mapWith[S, A, B](l: List[A])(f: A => DoWith[S, B]): DoWith[S, List[B]] =
l.foldRight[DoWith[S, List[B]]](

???
) { (h, acc) =>

???
}

defined function mapWith

Tests

Also recall the mapFirst function we defined previously that replaces the first element in l
where f returns Some(a) with a:

def mapFirst[A](l: List[A])(f: A => Option[A]): List[A] = l match {
case Nil => Nil
case h :: t =>

f(h) match {
case None => h :: mapFirst(t)(f)
case Some(h) => h :: t

}
}

defined function mapFirst

Exercise 31.12 (4 points). Implement a function mapFirstWith for List that instead takes
a stateful callback function f: A => Option[DoWith[S, B]]:

Edit this cell:

def mapFirstWith[S, A](l: List[A])(f: A => Option[DoWith[S, A]]): DoWith[S, List[A]] = l match {
case Nil =>

???
case h :: t =>

???
}

defined function mapFirstWith

375

Tests

376

32 Mutable State

Recall that the most characteristic feature of imperative computation is mutation—that is,
executing assignment for its side effect that updates a memory (cf. Section 3.1).

32.1 JavaScripty: Mutable Variables

32.1.1 Syntax

To introduce mutable state, we introduce mutable variables declared as follows:

var 𝑥 = 𝑒1; 𝑒2

A var declaration creates a new mutable variable and assigns it an initial value. We also
introduce an assignment expression:

𝑒1 = 𝑒2

that writes the value of 𝑒2 to a memory location named by expression 𝑒1. Note that we use the
C and JavaScript-style assignment operator =, which unfortunately looks like mathematical
equality but is very different.

Let us consider JavaScripty with number literals and mutable variables:

expressions 𝑒 ∶∶= 𝑛 ∣ 𝑥 ∣ var 𝑥 = 𝑒1; 𝑒2 ∣ 𝑒1 = 𝑒2 ∣ *𝑒1 ∣ 𝑎
variables 𝑥

values 𝑣 ∶∶= 𝑛
location values 𝑙 ∶∶= *𝑎

addresses 𝑎

Figure 32.1: Abstract syntax of JavaScripty with number literals and mutable variables.

To focus on mutation, let us drop const 𝑥 = 𝑒1; 𝑒2 constant-variable declarations for the
moment and have only var 𝑥 = 𝑒1; 𝑒2 mutable-variable declarations. The var 𝑥 = 𝑒1; 𝑒2

377

mutable-variable declaration allocates a new memory cell with fresh address 𝑎, evaluates 𝑒1 to
a value 𝑣1, stores value 𝑣1 in the new memory cell, and evaluates 𝑒2 with 𝑥 in scope pointing
to the new memory cell.

The assignment expression 𝑒1 = 𝑒2 evaluates 𝑒1 to a location value 𝑙1, 𝑒2 to a value 𝑣2, updates
the memory cell named by 𝑙1 with value 𝑣2, and returns 𝑣2.

We introduce the unary, pointer-dereference expression *𝑒1 in the abstract syntax to use as an
intermediate expression during reduction. It is not present in the concrete syntax of JavaScript,
though it corresponds to the pointer-dereference expression in the C and C++ languages.

An address 𝑎 is a memory address for a memory cell that stores some content like values. A
location value 𝑙 is a reduced expression that names a memory location.

Note that we do not consider an address 𝑎 to be a value here. In low-level languages like
C and C++, an address is called a pointer and is a first-class value (i.e., an address is a 𝑎
is a value). A location value is also called an l-value for the value of an expression on the
left-hand–side of an assignment, while a value is called a r-value for the value of an expression
on the right-hand–side of an assignment.

trait Expr // e
case class N(n: Double) extends Expr // e ::= n
case class Var(x: String) extends Expr // e ::= x
case class VarDecl(x: String, e1: Expr, e2: Expr) extends Expr // e ::= var x = e1; e2
case class Assign(e1: Expr, e2: Expr) extends Expr // e ::= e1 = e2
case class Deref(e1: Expr) extends Expr // e ::= *e1
case class A(a: Int) extends Expr // e ::= a

def isValue(e: Expr): Boolean = e match {
case N(_) => true
case _ => false

}

defined trait Expr
defined class N
defined class Var
defined class VarDecl
defined class Assign
defined class Deref
defined class A
defined function isValue

We represent an address 𝑎 in Scala as an A(a) for a positive integer a. We can think of
the address A(1) corresponding to the hexadecimal 0x00000004 memory address on a 32-bit
machine.

378

Let consider the example expression with assignment:

Listing 32.1 JavaScript

var i = 1;
i = 2

Listing 32.2 AST Representation in Scala

val e_assign =
VarDecl("i", N(1),

Assign(Var("i"), N(2))
)

e_assign: VarDecl = VarDecl(
x = "i",
e1 = N(n = 1.0),
e2 = Assign(e1 = Var(x = "i"), e2 = N(n = 2.0))

)

32.1.2 Small-Step Operational Semantics

32.1.2.1 Memories

A mutable variable is a variable that can be updated. We can think of a mutable variable as a
box that can be filled with a value, and then the value can be updated by filling the box with
a new value. A memory cell [𝑎 ↦ 𝑣] is such a box that has an address 𝑎 to reference that box.
A memory 𝑚 is then a finite set of such memory cells:

memories 𝑚 ∶∶= ⋅ ∣ 𝑚[𝑎 ↦ 𝑣]

Figure 32.2: Memories for JavaScripty with mutable variables.

We also view a memory 𝑚 as a finite map from addresses 𝑎 to values 𝑣 and write 𝑚(𝑎) for
looking up the value 𝑣 corresponding to address 𝑎 in memory 𝑚.

379

32.1.2.2 Location Values

We have noted above that a location value 𝑙 is a reduced expression that names a memory
location. Like 𝑒 value defining values, we can view this as unary judgment form 𝑒 location on
expressions:

𝑒 location
VarLocation

*𝑎 location

Figure 32.3: Location values for JavaScripty with mutable variables.

In particular, the location value for a variable is given by the expression *𝑎 for some address
𝑎.

32.1.2.3 Judgment Form for Imperative Computation

To define a small-step operational semantics with mutable variables, we need to update our
reduction-step judgment form to include memories:

⟨𝑒, 𝑚⟩ ⟶ ⟨𝑒′, 𝑚′⟩

that says, “Closed expression 𝑒 with memory 𝑚 reduces to closed expression 𝑒′ with updated
memory 𝑚′.”

We can see the state of the machine as a pair of the expression 𝑒 and the memory 𝑚:

states 𝜎 ∶∶= ⟨𝑒, 𝑚⟩

and thus the small-step judgment form is 𝜎 ⟶ 𝜎′. This machine state 𝜎 with a program 𝑒
that we execute for its effects on an off-to-the-side memory 𝑚 is the characteristic feature of
imperative computation.

In pure functional computation, the machine state 𝜎 is just the program 𝑒 that we evaluate to
a value (i.e., iterate 𝑒 ⟶ 𝑒′).

380

32.1.2.4 Inference Rules for Mutation

The DoDeref rule says that dereferencing an address *𝑎 reduces to the value 𝑣 stored in the
memory cell named by 𝑎:

DoDeref
[𝑎 ↦ 𝑣] ∈ 𝑚

⟨*𝑎, 𝑚⟩ ⟶ ⟨𝑣, 𝑚⟩

Note that it would be equivalent to write DoDeref as follows:

DoDeref

⟨*𝑎, 𝑚⟩ ⟶ ⟨𝑚(𝑎), 𝑚⟩

The DoAssignVar rule says that assigning value 𝑣 to memory location *𝑎 in memory 𝑚
updates memory 𝑚 with the cell [𝑎 ↦ 𝑣]:

DoAssignVar
𝑎 ∈ dom(𝑚)

⟨*𝑎 = 𝑣, 𝑚⟩ ⟶ ⟨𝑣, 𝑚[𝑎 ↦ 𝑣]⟩

The side-condition that the address 𝑎 is in the domain of memory 𝑚 (i.e., 𝑎 ∈ dom(𝑚)) says
that there is already an allocated memory cell [𝑎 ↦ 𝑣0] in 𝑚 so that we are writing 𝑚[𝑎 ↦ 𝑣]
to mean updating that cell from 𝑣0 to 𝑣 in memory 𝑚.

We shall see that memory addresses 𝑎 are introduced by var allocation, so the alternative
system that does not check this condition in the DoAssignVar rule

DoAssignVar

⟨*𝑎 = 𝑣, 𝑚⟩ ⟶ ⟨𝑣, 𝑚[𝑎 ↦ 𝑣]⟩

is essentially the same (technically, called being bisimilar).

The DoVarDecl rules describes allocating a new memory cell for a mutable variable:

DoVarDecl
𝑎 ∉ dom(𝑚)

⟨var 𝑥 = 𝑣1; 𝑒2, 𝑚⟩ ⟶ ⟨[*𝑎/𝑥]𝑒2, 𝑚[𝑎 ↦ 𝑣1]⟩

We choose a fresh address 𝑎, which we state with the side condition that 𝑎 ∉ dom(𝑚) and
thus the [𝑎 ↦ 𝑣1] is a new cell in the updated memory 𝑚[𝑎 ↦ 𝑣1]. The reduced expression
[*𝑎/𝑥]𝑒2 is interesting. The scope of variable 𝑥 is the continuation expression 𝑒2, so we must

381

eliminate free-variable occurrences of 𝑥 in 𝑒2. We do this by substituting the location value
*𝑎 corresponding to 𝑥 in 𝑒2.

In the following, we repeat the above Do rules along with the needed Search for mutable
variables:

⟨𝑒, 𝑚⟩ ⟶ ⟨𝑒′, 𝑚′⟩
DoDeref

⟨*𝑎, 𝑚⟩ ⟶ ⟨𝑚(𝑎), 𝑚⟩
DoAssignVar

⟨*𝑎 = 𝑣, 𝑚⟩ ⟶ ⟨𝑣, 𝑚[𝑎 ↦ 𝑣]⟩

DoVarDecl
𝑎 ∉ dom(𝑚)

⟨var 𝑥 = 𝑣1; 𝑒2, 𝑚⟩ ⟶ ⟨[*𝑎/𝑥]𝑒2, 𝑚[𝑎 ↦ 𝑣1]⟩

SearchAssign1
⟨𝑒1, 𝑚⟩ ⟶ ⟨𝑒′

1, 𝑚′⟩ 𝑒1 ≠ 𝑙1
⟨𝑒1 = 𝑒2, 𝑚⟩ ⟶ ⟨𝑒′

1 = 𝑒2, 𝑚′⟩

SearchAssign2
⟨𝑒′

2, 𝑚⟩ ⟶ ⟨𝑒′
2, 𝑚′⟩

⟨𝑙1 = 𝑒2, 𝑚⟩ ⟶ ⟨𝑙1 = 𝑒′
2, 𝑚′⟩

SearchVarDecl
⟨𝑒1, 𝑚⟩ ⟶ ⟨𝑒′

1, 𝑚′⟩
⟨var 𝑥 = 𝑒1; 𝑒2, 𝑚⟩ ⟶ ⟨var 𝑥 = 𝑒′

1; 𝑒2, 𝑚′⟩

Figure 32.4: Small-step operational semantics with mutable variables.

The SearchAssign1 rule says that if 𝑒1 is not a location value, then we need to reduce it to
be able to do the assignment:

SearchAssign1
𝑒1 ≠ 𝑙1 ⟨𝑒1, 𝑚⟩ ⟶ ⟨𝑒′

1, 𝑚′⟩
⟨𝑒1 = 𝑒2, 𝑚⟩ ⟶ ⟨𝑒′

1 = 𝑒2, 𝑚′⟩

Note that SearchAssign1 rule is needed if addresses were first-class values (cf. pointers in C
and C++). However, we see that it is not actually needed for this variant of JavaScripty where
addresses are not first-class. In this case, we can also restrict the syntax of assignment to

expressions 𝑒 ∶∶= 𝑥 = 𝑒1

Studying the DoVarDecl rule, we see that assignment expressions 𝑥 = 𝑒1 where 𝑥 is in scope
would become *𝑎 = 𝑒1 on substitution where either SearchAssign2 or DoAssignVar would
apply.

Indeed, the actual concrete syntax of JavaScript is restricted such that only certain the ex-
pression forms like variables can be written on the left-hand–side of assignment.

382

32.1.3 Implementation

32.1.3.1 Memories

Let us define Mem as an abstract data type to represent a memory 𝑚 (defined in Figure 32.2)
in terms of a Scala Map[A, Expr]:

sealed class Mem private (m: Map[A, Expr], nextAddr: Int) {
def apply(a: A): Expr = m(a)
override def toString: String = m.toString

def +(av: (A, Expr)): Mem = {
val (a, _) = av
require(m.contains(a))
new Mem(m + av, nextAddr)

}

def alloc(v: Expr): (A, Mem) = {
val fresha = A(nextAddr)
(fresha, new Mem(m + (fresha -> v), nextAddr + 1))

}
}

object Mem {
val empty: Mem = new Mem(Map.empty, 1)

}

defined class Mem
defined object Mem

The apply and toString methods simply delegate to the corresponding methods on the un-
derlying m: Map[A, Expr].

In addition to underlying m: Map[A, Expr], the additional nextAddr: Int field represents
the next available address. The + method for updating the memory checks that the given
address to update a is already in the map. The alloc method implements allocating a fresh
address fresha: A by using the next available address, extending the map with the new cell
(fresha -> v) using the given initialization value v, and advances the next available address
to nextAddr + 1.

The abstract data type Mem thus maintains a consistency invariant between the map m: Map[A,
Expr] and the next available address nextAddr: Int. As a client, any address A that we
obtained from alloc must have a corresponding mapping in m:

383

val (a, m) = Mem.empty.alloc(N(42))

a: A = A(a = 1)
m: Mem = Map(A(1) -> N(42.0))

One further step we could take is to make A an abstract data type where the only way for a
client to get an address A is via alloc.

32.1.3.2 Location Values

We define isLValue defining the expression forms that are location values following the
𝑒 location judgment form (see Figure 32.3):

def isLValue(e: Expr): Boolean = e match {
case Deref(A(_)) => true
case _ => false

}

defined function isLValue

32.1.3.3 Substitution

Comparing var 𝑥 = 𝑒1; 𝑒2 and const 𝑥 = 𝑒1; 𝑒2, they are the same with respect to binding a
variable whose scope is 𝑒2. Thus, substitution works the same for both.

We define substitute(with_e, x, in_e) to implement

[with_e / x] in_e
assume that with_e and in_e have non-intersecting free variables (following Figure 21.1 in
Section 21.9):

def substitute(with_e: Expr, x: String, in_e: Expr) = {
// Assume that with_e and in_e have non-intersecting free variables.
def $(in_e: Expr): Expr = in_e match {

case N(_) | A(_) => in_e
case Var(y) => if (x == y) with_e else in_e
case VarDecl(y, e1, e2) => if (x == y) VarDecl(y, $(e1), e2) else VarDecl(y, $(e1), $(e2))
case Assign(e1, e2) => Assign($(e1), $(e2))
case Deref(e1) => Deref($(e1))

}

384

$(in_e)
}

defined function substitute

32.1.3.4 Step

We can now define a step function following the ⟨𝑒, 𝑚⟩ ⟶ ⟨𝑒′, 𝑚′⟩ judgment form (see Fig-
ure 32.4).

32.1.3.4.1 Explicit State Passing

We first choose to define step with type (Expr, Mem) => (Expr, Mem):

def step(e: Expr, m: Mem): (Expr, Mem) = e match {
// DoDeref
case Deref(a @ A(_)) => (m(a), m)
// DoAssignVar
case Assign(Deref(a @ A(_)), v) if isValue(v) => (v, m + (a -> v))
// DoVarDecl
case VarDecl(x, v1, e2) if isValue(v1) => {

val (a, m_) = m.alloc(v1)
(substitute(Deref(a), x, e2), m_)

}
// SearchAssign2
case Assign(l1, e2) if isLValue(l1) => {

val (e2_, m_) = step(e2, m)
(Assign(l1, e2_), m_)

}
// Skip SearchAssign1
// SearchVarDecl
case VarDecl(x, e1, e2) => {

val (e1_, m_) = step(e1, m)
(VarDecl(x, e1_, e2), m_)

}
}

defined function step

385

Let us test step:

val (e_assign_, m_) = step(e_assign, Mem.empty)
val (e_assign__, m__) = step(e_assign_, m_)

e_assign_: Expr = Assign(e1 = Deref(e1 = A(a = 1)), e2 = N(n = 2.0))
m_: Mem = Map(A(1) -> N(1.0))
e_assign__: Expr = N(n = 2.0)
m__: Mem = Map(A(1) -> N(2.0))

32.1.3.4.2 Encapsulated State

While the above implementation of step faithfully implements the small-step operational se-
mantics judgment form ⟨𝑒, 𝑚⟩ ⟶ ⟨𝑒′, 𝑚′⟩, we see it requires threading explicitly different
versions of the memory state m: Mem (e.g., m_), which could be error prone.

Recall the idea of representing mutation effects by encapsulating a function of type
S => (S, A) for a state type S and a main value type A into a data type DoWith[S, A] (see
Section 30.5):

Listing 32.3 DoWith._

sealed class DoWith[S, A] private (doer: S => (S, A)) {
def map[B](f: A => B): DoWith[S, B] = new DoWith[S, B]({ (s: S) => { val (s_, a) = doer(s); (s_, f(a)) } })
def flatMap[B](f: A => DoWith[S, B]): DoWith[S, B] = new DoWith[S, B]({ (s: S) => { val (s_, a) = doer(s); f(a)(s_) } })
def apply(s: S): (S, A) = doer(s)

}

object DoWith {
def doget[S]: DoWith[S, S] = new DoWith[S, S]({ s => (s, s) })
def doput[S](s: S): DoWith[S, Unit] = new DoWith[S, Unit]({ _ => (s, ()) })
def doreturn[S, A](a: A): DoWith[S, A] = new DoWith[S, A]({ s => (s, a) })
def domodify[S](f: S => S): DoWith[S, Unit] = new DoWith[S, Unit]({ s => (f(s), ()) })

}

import DoWith._

defined class DoWith
defined object DoWith
import DoWith._

386

Rearranging the type of step slightly, we see that we can implement the judgment
form ⟨𝑒, 𝑚⟩ ⟶ ⟨𝑒′, 𝑚′⟩ using a step function of type Expr => Mem => (Mem, Expr) or
Expr => DoWith[Mem, Expr].

For convenience and to warm up, let us start by defining a helper function to the alloc method
of Mem using a DoWith[Mem, A]:

def memalloc(v: Expr): DoWith[Mem, A] = doget flatMap { m =>
val (a, m_) = m.alloc(v)
doput(m_) map { _ => a }

}

defined function memalloc

We now translate the explicit state passing version of step from above (Section 32.1.3.4.1) to
use an encapsulated DoWith[Mem, Expr] state as follows:

def step(e: Expr): DoWith[Mem, Expr] = e match {
// DoDeref
case Deref(a @ A(_)) =>

doget map { m => m(a) }

// DoAssignVar
case Assign(Deref(a @ A(_)), v) if isValue(v) =>

domodify[Mem](m => m + (a -> v)) map { _ => v }

// DoVarDecl
case VarDecl(x, v1, e2) if isValue(v1) =>

memalloc(v1) map { a => substitute(Deref(a), x, e2) }

// SearchAssign2
case Assign(l1, e2) if isLValue(l1) =>

step(e2) map { e2 => Assign(l1, e2) }

// Skip SearchAssign1

// SearchVarDecl
case VarDecl(x, e1, e2) =>

step(e1) map { e1 => VarDecl(x, e1, e2) }
}

defined function step

387

We see that the memory state fades into the background, except where it is explicitly needed.
It is in the implementation of the Search rules where this fading into the background is
particularly salient—whatever effect on memory happens in the recursive call to step is just
passed along.

To use step, we can still run each step explicitly:

val (m_, e_assign_) = step(e_assign)(Mem.empty)
val (m__, e_assign__) = step(e_assign_)(m_)

m_: Mem = Map(A(1) -> N(1.0))
e_assign_: Expr = Assign(e1 = Deref(e1 = A(a = 1)), e2 = N(n = 2.0))
m__: Mem = Map(A(1) -> N(2.0))
e_assign__: Expr = N(n = 2.0)

Observe that we have explicitly threaded the memory state in these top-level calls to step
to show the intermediate memory state and expressions. That is, we called step(e_assign)
to get a DoWith[Mem, Expr] that we then called with Mem.empty to get (m_, e_assign_)
and then called the DoWith[Mem, Expr] resulting from step(e_assign_) with the current
memory m_.

But we do not have to get the intermediate memory state m_. We can get the DoWith[Mem,
Expr] for the two steps and then run it:

val (m__, e_assign__) = (step(e_assign) flatMap step)(Mem.empty)

m__: Mem = Map(A(1) -> N(2.0))
e_assign__: Expr = N(n = 2.0)

Or, we can rewrite the above make it more visible that flatMap is a sequential composition
operator:

val (m__, e_assign__) = (doreturn(e_assign) flatMap step flatMap step)(Mem.empty)

m__: Mem = Map(A(1) -> N(2.0))
e_assign__: Expr = N(n = 2.0)

If desired, we can also use the for-yield expression syntax in Scala:

388

def step(e: Expr): DoWith[Mem, Expr] = e match {
// DoDeref
case Deref(a @ A(_)) =>

for { m <- doget } yield m(a)

// DoAssignVar
case Assign(Deref(a @ A(_)), v) if isValue(v) =>

for { _ <- domodify[Mem](m => m + (a -> v)) } yield v

// DoVarDecl
case VarDecl(x, v1, e2) if isValue(v1) =>

for { a <- memalloc(v1) } yield substitute(Deref(a), x, e2)

// SearchAssign2
case Assign(l1, e2) if isLValue(l1) =>

for { e2 <- step(e2) } yield Assign(l1, e2)

// Skip SearchAssign1

// SearchVarDecl
case VarDecl(x, e1, e2) =>

for { e1 <- step(e1) } yield VarDecl(x, e1, e2)
}

defined function step

The two step calls here look somewhat like having a side-effect on a mutable memory state,
but in actuality, immutable memory states are threaded in the background:

val (m__, e_assign__) = (for {

e_assign_ <- step(e_assign)
e_assign__ <- step(e_assign_)

} yield e_assign_)(Mem.empty)

m__: Mem = Map(A(1) -> N(2.0))
e_assign__: Expr = Assign(e1 = Deref(e1 = A(a = 1)), e2 = N(n = 2.0))

TypeScripty - Formalize Type Checking

389

32.2 Other Effects

One might realize that before considering mutation in the above, we have considered another
side-effecting JavaScripty expression in logging to the console:

console.log("Hello, World!")

The console.log(𝑒) expression evaluates 𝑒 to a value, logs that value to the console as a
side-effect, and evaluates to undefined. Its effect is external to its final value undefined.

We gave this rule for DoPrint:

DoPrint
𝑣1 printed

console.log(𝑣1) ⟶ undefined

that states the logging effect informally with the “𝑣1 printed” condition.

If we want to describe explicitly that there is log of values (e.g., separated by linefeed characters
LF), then we need to similarly reify a log state log

logs log ∶∶= ⋅ ∣ log LF 𝑣

and extend our small-step judgment with a log state ⟨𝑒, log⟩ ⟶ ⟨𝑒′, log′⟩:

DoPrint

⟨console.log(𝑣1), log⟩ ⟶ ⟨undefined, log LF 𝑣1⟩

390

References

[1] Dean, J. and Ghemawat, S. 2008. MapReduce: Simplified data processing on large
clusters. Commun. ACM. 51, 1 (2008), 107–113.

[2] Hoare, C.A.R. 2009. Null references: The billion dollar mistake. QCon London (2009).
[3] Milner, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst.

Sci. 17, 3 (1978), 348–375. DOI:https://doi.org/10.1016/0022-0000(78)90014-4.
[4] Odersky, M. et al. 2008. Programming in Scala. Artima.
[5] Odersky, M. et al. 2019. Programming in Scala, fourth edition. Artima.
[6] Python Software Foundation What is Python?

391

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://doi.org/10.1016/0022-0000(78)90014-4
https://www.python.org/doc/essays/blurb/

	Preface
	Introduction
	Getting Your Money's Worth
	You will be able to learn new languages quickly and select a suitable one for your task.
	You will gain new ways of viewing computation and approaching algorithmic problems.
	You will gain new ways of viewing programs.
	You will gain insight into avoiding mistakes for when you design languages.
	You will be able to use AI assistants to accelerate your creative design.

	Course Approach
	Expectations and Finding Success

	Programming Preliminaries
	Expressions
	Is a Program Executed or Evaluated?
	Basic Values, Types, and Expressions
	Static Type Checking
	Run-Time Errors
	Unit
	Operators

	Evaluation

	Binding and Scope
	Binding Names
	Value Bindings
	Type Bindings

	Scoping
	Shadowing
	Free versus Bound Variables

	Mutable Variables
	Functions and Tuples
	Function Definitions
	First-Class Functions
	Tuples
	Pattern Matching

	String Interpolation

	Exercise: Binding and Scope
	Example 1
	Example 2

	Data Types
	Standard Collections
	Lists
	Options
	Maps
	Sets

	Classes
	Data Classes

	Algebraic Data Types
	Option
	Parametric Polymorphism

	Exercise: Expressions and Data Types
	Learning Goals
	Instructions
	Type Checking
	Unit Testing
	Run-Time Library
	Imperative Iteration and Complexity
	Submission

	Recursion, Induction, and Iteration
	Induction: Reasoning about Recursive Programs
	Pattern Matching
	Function Preconditions
	Iteration: Tail Recursion with an Accumulator
	Exercise: Exponentiation
	Exercise: Tail-Recursive Fibonacci

	Inductive Data Types
	Lists
	Persistent Data Structures
	Abstract Syntax Trees (ASTs)
	Mini Programming Languages
	Representing Abstract Syntax

	Lab: Recursion, Inductive Data Types, and Abstract Syntax Trees
	Learning Goals
	Instructions
	Recursion
	Repeat String
	Square Root

	Data Structures Review: Binary Search Trees
	Interpreter: JavaScripty Calculator
	Experiment in a Worksheet
	Test-Driven Development and Regression Testing
	Additional Notes

	Submission

	Approaching a Programming Language
	Concrete Syntax
	Concrete versus Abstract Syntax
	Context-Free Grammars
	Deriving a Sentence in a Grammar
	Lexical and Syntactic
	Ambiguous Grammars

	Abstract Syntax and Parsing
	Abstract Syntax
	Parsing
	Top-Down Parsing

	Exercise: Syntax
	Learning Goals
	Instructions
	Imports
	Abstract Syntax Trees
	Defining an Inductive Data Type
	Converting to Negation Normal Form
	Substitution

	Concrete Syntax
	Precedence Detective

	Parse Trees
	Defining Grammars

	Static Scoping
	JavaScripty (JavaScript)
	Lettuce (OCaml)
	Smalla (Scala)
	JavaScripty: Variable Uses and Binding
	Free Variables
	Value Environments and Evaluation
	Renaming Bound Variables
	JavaScripty (JavaScript)
	Lettuce (OCaml)
	Smalla (Scala)
	Higher-Order Abstract Syntax

	JavaScripty: Concrete Syntax: Declarations

	Judgments
	Grammars and Inference Rules
	Example: Syntax
	Key Intuition

	Derivations of Judgments
	Inductively-Defined
	Example: Structural Equality

	Functions versus Relations
	Example: Semantics

	Lab: Basic Values, Variables, and Judgments
	Learning Goals
	Instructions
	Interpreter: JavaScripty Calculator
	Coercions: Basic Values
	Booleans, Strings, and Undefined
	Expressions
	Semantics Detective: JavaScript is Bananas

	Interpreter: JavaScripty Variables
	Testing

	Submission

	Review: Syntax
	Instructions
	Learning-Levels Rubric
	Abstract Syntax Trees
	Ambiguity Detective
	Grammars
	Concrete Syntax, Abstract Syntax, and Semantics
	Interpreter Implementation

	Language Design and Implementation
	Operational Semantics
	Big-Step Operational Semantics
	JavaScript is Bananas
	An Evaluation Judgment

	One Type of Values
	Dynamic Typing
	Coercions
	Variables
	JavaScripty: Variables, Numbers, and Booleans
	JavaScripty: Strings

	Functions and Dynamic Scoping
	Functions Are Values
	Dynamic Scoping
	Closures
	Substitution
	Recursive Functions
	JavaScripty: Concrete Syntax: Functions

	Exercise: Big-Step Operational Semantics
	Learning Goals
	Instructions
	Imports
	A Big-Step Javascripty Interpreter
	Syntax

	Dynamic Scoping Test
	Reading an Operational Semantics
	Strings
	Functions

	Implementing from Inference Rules
	Abstract Syntax
	Variables, Numbers, and Booleans
	Functions
	Dynamic Typing
	Dynamic Scoping
	Closures

	Implementing Recursive Functions (Accelerated)
	Defining Inference Rules
	Writing a Test Case

	Evaluation Order
	A Small-Step Operational Semantics
	One Type of Values
	Dynamic Typing
	Generic Evaluation Order
	Non-Determinism
	Short-Circuiting Evaluation
	Polymorphism
	Recursion
	Substitution
	Multi-Step Reduction

	Lab: Small-Step Operational Semantics
	Learning Goals
	Instructions
	Small-Step Interpreter: JavaScripty Functions
	Static Scoping
	Iteration
	Small-Step Interpreter
	Small-Step Operational Semantics
	Do Rules
	Search Rules
	Coercing to Boolean
	Dynamic Typing Rules

	Concept Exercises
	Testing
	Accelerated Component
	Additional Type Coercions
	Updating the Small-Step Operational Semantics
	Update Step
	Notes

	Submission

	Review: Semantics
	Instructions
	Learning-Levels Rubric
	Dynamic versus Static Scoping
	Small-Step Semantics with Coercions
	Short-Circuit Evaluation and Evaluation Order
	Big-Step Semantics with Substitution and Dynamic Type Errors

	Static Checking
	Higher-Order Functions
	Currying
	Collections and Callbacks
	Map
	FlatMap
	FoldRight
	Other Folds and Reduce

	Abstract Data Types

	Exercise: Higher-Order Functions
	Learning Goals
	Instructions
	Imports
	Collections
	Lists
	Maps
	Trees

	flatMap

	Static Type Checking
	JavaScripty: Numbers and Functions
	Syntax
	Small-Step Operational Semantics

	Getting Stuck
	Dynamic Typing
	Static Typing
	TypeScripty: Numbers and Functions
	Syntax
	Small-Step Operational Semantics

	Typing Judgment
	Type Soundness

	Lazy Evaluation
	Lab: Static Type Checking
	Learning Goals
	Instructions
	Static Typing: TypeScripty: Functions and Objects
	Interpreter Implementation
	Base TypeScripty
	Small-Step Reduction
	Static Type Checking

	Immutable Objects (Records)
	Small-Step Reduction
	Static Type Checking

	Multi-Parameter Recursive Functions
	Small-Step Reduction
	Static Type Checking

	Review: Higher-Order Functions and Static Checking
	Instructions
	Learning-Levels Rubric
	Higher-Order Functions
	Static Typing

	Imperative Computation
	Encapsulating Effects
	Abstract Data Types
	Error Effects
	Option
	Either
	Try

	Non-Determinism Effects
	Mutation Effects
	Encapsulating Mutation Effects
	Monads
	Monad Interface
	Contextual Abstraction

	Exercise: Programming with Encapsulated Effects
	Learning Goals
	Instructions
	Imports
	TypeScripty: Numbers, Booleans, and Functions
	Syntax
	Static Type Checking

	Error Effects
	Type-Error Result
	Implementation

	Mutation Effects
	Defining Generic DoWith Methods
	Renaming Bound Variables
	Test
	DoWith with Collections

	Mutable State
	JavaScripty: Mutable Variables
	Syntax
	Small-Step Operational Semantics
	Implementation

	Other Effects

	References

