
Principles and Practice in Programming

Languages: A Project-Based Course

Bor-Yuh Evan Chang

UNIVERSITY OF COLORADO BOULDER

E-mail address: evan.chang@colorado.edu

Draft as of October 6, 2016.

Disclaimer: This manuscript is a draft of a set of course notes for the Prin-
ciples of Programming Languages at the University of Colorado Boulder.
There may be typos, bugs, or inconsistencies that have yet to be resolved.

Contents

Chapter 1. Introduction and Preliminaries 1
1.1. Getting Your Money’s Worth 1
1.1.1. How? 3
1.2. Is a Program Executed or Evaluated? 4
1.2.1. Basic Values, Types, and Expressions 5
1.2.2. Evaluation 6
1.2.3. Binding Names 7
1.2.4. Scoping 8
1.2.5. Function Definitions and Tuples 10
1.3. Recursion, Induction, and Iteration 11
1.3.1. Induction: Reasoning about Recursive Programs 12
1.3.2. Pattern Matching 13
1.3.3. Function Preconditions 14
1.3.4. Iteration: Tail Recursion with an Accumulator 15
1.4. Lab 1 17
1.4.1. Scala Basics: Binding and Scope 17
1.4.2. Scala Basics: Typing 17
1.4.3. Run-Time Library 18
1.4.4. Run-Time Library: Recursion 19
1.4.5. Data Structures Review: Binary Search Trees 20
1.4.6. JavaScripty Interpreter: Numbers 22

Chapter 2. Approaching a Programming Language 25
2.1. Syntax: Grammars and Scoping 25
2.1.1. Context-Free Languages and Context-Free Grammars 26
2.1.1.1. Derivation of a Sentence in a Grammar. 26
2.1.2. Lexical and Syntactic 27
2.1.3. Ambiguous Grammars 28
2.1.4. Abstract Syntax 31
2.2. Structural Induction 32
2.2.1. Structural Induction over Lists 33
2.2.2. Structural Induction over Abstract Syntax Trees 36
2.3. Judgments 38
2.3.1. Example: Syntax 38

iii

iv CONTENTS

2.3.2. Derivations of Judgments 39
2.3.3. Structural Induction on Derivations 39

Chapter 3. Language Design and Implementation 41
3.1. Operational Semantics 41
3.1.1. Syntax: JavaScripty 41
3.1.2. A Big-Step Operational Semantics 42
3.2. Small-Step Operational Semantics 46
3.2.1. Evaluation Order 46
3.2.2. A Small-Step Operational Semantics of JAVASCRIPTY 47
3.2.2.1. Substitution 51
3.2.2.2. Multi-Step Evaluation 52

Chapter 4. Static Checking 55
4.1. Type Checking 55
4.1.1. Getting Stuck 55
4.1.2. Dynamic Typing 56
4.1.3. Static Typing 57

Bibliography 61

CHAPTER 1

Introduction and Preliminaries

1.1. Getting Your Money’s Worth

This course is about principles, concepts, and ideas that underly pro-
gramming languages. But what does this statement mean?

As a student of computer science, it is completely reasonable to think
and ask, “Why bother? I’m proficient and like programming in Ruby. Isn’t
that enough? Isn’t language choice just a matter of taste? If not, should I
be using another language?”

Certainly, there are social factors and an aspect of personal prefer-
ence that affect the programming languages that we use. But there is also
a body of principles and mathematical theories that allow us to discuss
and think about languages in a rigorous manner. We study these under-
pinnings because a language affects the way one approaches problems
working in that language and affects the way one implements that lan-
guage. At the end of this course, we hope that you will have grown in the
following ways.

You will be able to learn new languages quickly and select a suitable
one for your task. This goal is very much a practical one. Languages that
are “popular” vary quickly. The TIOBE Programming Community Index1

surveys the popularity of programming languages over time. While it is
just one indicator, the take home message seems to be that a large num-
ber of languages are active at any one time, and the level of activity of any
language varies widely over time. The “hot” languages now or the lan-
guages that you study now will almost certainly not be the ones you need
later in your career.

There is a lingo for describing programming languages. The introduc-
tion to any programming language is likely to include a statement that
aims to succinctly captures various design choices.

Python: “Python is an interpreted, interactive, object-oriented pro-
gramming language. It incorporates modules, exceptions, dy-
namic typing, very high level dynamic data types, and classes.”2

1http://www.tiobe.com/content/paperinfo/tpci/, January 2012.
2http://docs.python.org/faq/general#what-is-python, January 2012.

1

http://www.tiobe.com/content/paperinfo/tpci/
http://www.tiobe.com/content/paperinfo/tpci/
http://docs.python.org/faq/general#what-is-python

2 1. INTRODUCTION AND PRELIMINARIES

OCaml: OCaml offers “a power type system, equipped with para-
metric polymorphism and type inference [. . .], user-definable al-
gebraic data types and pattern matching [. . .], automatic mem-
ory management [. . .], separate compilation of stand-alone ap-
plications [. . .], a sophisticated module system [. . .], an expres-
sive object-oriented layer [. . .], and efficient native code compil-
ers.”3

Haskell: Haskell is “a polymorphically statically typed, lazy, purely
functional language, quite different from most other program-
ming languages.”4

Scala: “Scala is a blend of object-oriented and functional program-
ming concepts in a statically typed language” [3].

At this point, it is understandable if the above statements seem as if they
are written a foreign language.

You will gain new ways of viewing computation and approaching
algorithmic problems. There are fundamental models of computation or
programming paradigms that persist (e.g., imperative programming and
functional programming). Most general-purpose languages mix paradigms
but generally have a bias. These biases can shape the way you approach
problems.

For natural languages, linguistic relativity, the hypothesis that the lan-
guage one speaks influences the way one perceives the world, is both tan-
talizing and controversial. Many have espoused this notion to program-
ming languages by analogy. Setting aside the controversy and assuming
at least a kernel of truth, practicing and working with different program-
ming models may expose ideas in new contexts. For example, MapRe-
duce is the programming model created by Google for data processing
on large clusters inspired by the functional programming paradigm [1].

This course is not a survey of programming languages present and
past. We may make references to programming languages as examples of
particular design decisions, but the goal is not to “learn” lots of languages.
The analogy to natural languages is perhaps apt. It does not particularly
help one understand the structure of natural languages by learning to say
“hello” in as many as possible.

You will gain new ways of viewing programs. The meaning of pro-
gram is given by how it executes, but a program is also artifact in itself
that has properties. What a program does or how a program executes
is perhaps the primary way one views programs—a program computes

3http://caml.inria.fr/about/, January 2012.
4http://www.haskell.org/haskellwiki/Introduction/, January 2012.

http://caml.inria.fr/about/
http://www.haskell.org/haskellwiki/Introduction/

1.1. GETTING YOUR MONEY’S WORTH 3

something. At the same time, a program can be transformed into a differ-
ent one that “behaves the same.” How do we characterize “behaves the
same”? This question is one that can be discussed using programming
language theory.

It is also a question of practical importance for language implementa-
tion. A compiler translates a program that a human developer writes into
one a computational machine can execute. The compiler must abide by
the contract that it outputs a program for the machine that “behaves the
same” as the program written by the developer.

You will gain insight into avoiding mistakes for when you design
languages. When (not if!) you design and implement a language, you
will avoid the mistakes of the past. You may not design a general-purpose
programming language, but you may have a need to create a “little” con-
figuration, mark-up, or layout language. “Little” languages are often cre-
ated without much regard to good design because they are “little,” but
they can quickly become not so “little.”

Avoiding bad language design is tricky. Experts make mistakes, and
mistakes can have long-lasting effects. Turing award winner Sir C.A.R.
Hoare has called his invention of the null reference a “billion dollar mis-
take” [2].

1.1.1. How? We will construct language interpreters to get experi-
ence with the “guts” of programming language design and implementa-
tion. The semester project will be to build and understand an interpreter
for JavaScript (or rather, a variant of it)–our example source language. The
source language is sometimes called the object language. Along the way,
we will consider the design decisions made and think about alternatives,
and we will study the programming language theory that enable us to
reason carefully about them. Our approach will be gradual in that we will
initially consider a small subset of our source language and then slowly
grow the aspects of the language that we consider.

Our implementation language of study will be Scala5. The implemen-
tation language is sometimes called the meta language. Scala is a mod-
ern, general-purpose programming language that includes many advanced
ideas from programming language research. In particular, we are inter-
ested in it because it is especially well suited for building language tools.
As quoted above, Scala “blends” concepts from object-oriented and func-
tional programming [3] and in many ways tries to support each in its “na-
tive environment.” Scala has also found a myriad of other applications,
including being a hot language for web services right now. It is compat-
ible with Java and runs on the Java Virtual Machine (JVM) and has been

5http://www.scala-lang.org/, August 2012.

http://www.scala-lang.org/
http://www.scala-lang.org/

4 1. INTRODUCTION AND PRELIMINARIES

applied in industrial practice by such companies as LinkedIn and Twit-
ter.6

1.2. Is a Program Executed or Evaluated?

Broadly speaking, the “schism” between imperative programming and
functional programming comes down to the basic notion of what defines
computation step. In the imperative computational model, we focus on
executing statements for its effects on a memory. A program consists of a
sequence of statements (or sometimes called commands or instructions)
that is largely viewed as fixed and separate from the memory (or some-
times called the store) that it is modifying. Assembly languages and C
are often held as examples of imperative programming. In the functional
computational model, we focus on evaluating expressions, that is, rewrit-
ing expressions until we obtain a value. A program and the computation
“state” is an expression (also sometimes called a term). To a first approxi-
mation, there is no external memory. Expression rewriting is actually not
so unfamiliar. Primary school arithmetic is expression evaluation:

(1+1)+ (1+1) −→ 2+ (1+1) −→ 2+2 −→ 4

where the −→ arrow signifies an evaluation step.
In actuality, the “schism” is somewhat false. Few languages are ex-

clusively imperative or exclusively functional in the sense defined above.
“Imperative programming languages” have effect-free expression subsets
(e.g., for arithmetic), while “functional programming languages” have ef-
fectful expressions (e.g., for printing to the screen). Being effect-free or
pure has certain advantages by being essentially independent of how a
machine evaluates expressions. For example, the final result does not de-
pend on the order of evaluation (e.g., whether the left (1+1) or the right
(1+1) is evaluated first), which makes it easier to reason about programs
in isolation (e.g., the meaning of (1+1)+ (1+1)). At the same time, inter-
acting with the underlying execution engine can be powerful, and thus
we will at times want effects. The potentially surprising idea at this point
is how often we can program effectively without effects.

We will consider and want to support both effect-free and effectful
computation. The take-home message here is it is too simplistic to say
a programming language is imperative or functional. Rather, we see that
it is a bias in perspective in how we see computation and programs. For
imperative languages, programs, and constructs, we speak of statement
execution that modifies a memory or data store. For functional languages,
programs, and constructs, we think of expression evaluation that reduces

6http://www.scala-lang.org/node/1658/, January 2012.

http://www.scala-lang.org/node/1658/

1.2. IS A PROGRAM EXECUTED OR EVALUATED? 5

to a value or terminal result. We will see how this bias affects, for example,
how we program repetition (i.e., looping versus recursion or comprehen-
sions).

Note that the term “functional programming language” is quite over-
loaded in practice. For example, it may refer to the language having the
expression rewriting bias described above, being pure and free of effect-
ful expressions, or having higher-order functions (discussed in ??).

Both JavaScript and Scala have aspects of both, including the features
that are often considered the most characteristic: mutation and higher-
order functions.

1.2.1. Basic Values, Types, and Expressions. We begin our language
study by focusing on a small subset of Scala.

Basic expressions, values, and types are seemingly boring, but they
also form the basis of any programming language. A value has a type,
which defines the operations that can be applied to it. Scala has all the
familiar basic types, such as Int, Float, Double, Boolean, Char, and
String. We can directly write down values of these types using literals:

42: Int
1.618f: Float
1.618: Double
true: Boolean
’a’: Char
"Hello!": String

An expression can be a literal or consist operations that await to be eval-
uated. For example, here are some expected expressions:

40 + 2: Int
1 < 2: Boolean
if (1 < 2) 3 else 4: Int
"Hello" + "!": String

Often, we want to refer to arbitrary values, types, or expressions in a pro-
gramming language. To do so, we use meta-variables that stand for enti-
ties in our language of interest, such as v for a value, τ for a type, and e
for an expression.

We have annotated types on all of the expressions above, that is, we
assert that the value that results from evaluating that expression (if one
results) should have that type. In this case, all of these examples are well-
typed expressions, that is, the typing assertion holds for them. Scala is
statically typed. In essence, this statement means that the Scala compiler
will perform some validation at compile-time (called type checking) and

6 1. INTRODUCTION AND PRELIMINARIES

only translate well-typed expressions. We discuss type checking further
in section 4.1; for now, it suffices to view type checking as making sure all
operations in subexpressions have the “expected type.” We state that an
expression e is well-typed with type τ using essentially the same notation
as Scala, that is, we write

e : τ for expression e has type τ.

An expression may not always yield a value. For example, a divide-by-
zero expression

42 / 0: Int

generates a run-time error, that is, an error that is raised during evalua-
tion. Some languages are described as being dynamically typed, which
means no type checking is performed before evaluation. Rather, a run-
time type error is raised when evaluation encounters an operations that
cannot be applied to the argument values. In general, the term static
means before evaluating the program, while the term dynamic means
during the evaluation of the program.

1.2.2. Evaluation. We need a way to write down evaluation to de-
scribe how values are computed. Recall that in our setting, the computa-
tion state is an expression, so we write

e −→ e ′ for expression e steps to expression e ′ in one step.

What exactly is “one step” is a matter of definition, which we do not worry
about much at this point. Rather, we may write

e −→∗ e ′ for expression e steps to e ′ in 0 or more steps,

that is, in some number of steps. For any expression, the possible next
steps dictate how evaluation proceeds and is related to concepts like eval-
uation order and eager versus lazy evaluation, which we revisit later in
Sections 3.1 and ??. Eager evaluation means that subexpressions are eval-
uated to values before applying the operation. At this point, it may be
hard to imagine anything but eager evaluation. In our current subset of
Scala, eager evaluation applies (though Scala supports both).

Sometimes, we only care about the final value of an expression (i.e.,
its value), so we write

e ⇓ v for expression e evaluates to value v .

1.2. IS A PROGRAM EXECUTED OR EVALUATED? 7

1.2.3. Binding Names. Thus far, our expressions consist only of op-
erations on literals, which is certainly restricting! Like other languages,
we would like to introduce names that are bound to other items, such as
values.

To introduce a value binding in Scala, we use a val declaration, such
as the following:

val two = 2
val four = two + two

The first declaration binds the name two to the value 2, and the second
declaration binds the name four to the value of two + two (i.e., 4). The
syntax of value bindings is as follows:

val x: τ = e

for a variable x, type τ, and expression e. For the value binding to be
well typed, expression e must be of type τ. The type annotation : τ is
optional, which if elided is inferred from typing expression e. At run-time,
the name x is bound to value of expression e (i.e., the value obtained by
evaluating e to a value). If e does not evaluate to a value, then no binding
occurs.

A binding makes a new name available to an expression in its scope.
For example, the name two must be in scope for the expression

two + two

to have meaning. Intuitively, to evaluate this expression, we need to know
to what value the name two is bound. We can view val declarations as
evaluating to a value environment. A value environment is a finite map
from names to values, which we write as follows:

[x1 7→ v1, . . . , xn 7→ vn]

For example, the first binding in our example above yields the following
environment:

[two 7→ 2]

Intuitively, to evaluate the expression two + two, we replace or substi-
tute the value of the binding for the name two and then reduce as before:

[two 7→ 2](two + two) = 2 + 2 −→ 4 .

In the above, we are conceptually “applying” the environment as a sub-
stitution to the expression two + two to get the expression 2 + 2, which
reduces to the value 4.

8 1. INTRODUCTION AND PRELIMINARIES

For type checking, we need a similar type environment that maps
names to types. For example, the type environment

[two 7→ Int]

may be used to type check the expression two + two.
Declarations may be sequenced as seen in the example above where

the binding of the name two is then used in the binding of the name four.
Another kind of binding is for types where we can bind one type name

to another creating a type alias, such as

type Str = String

Type binding is not so useful in our current Scala subset, but such bind-
ings become particularly relevant later on in ??.

1.2.4. Scoping. At this point, all our bindings are placed into the global
scope. A scope is simply a window of the program where a name applies.
We can limit the scope of a name by using blocks:

{
val two = 2

}
two // error: name two is out of scope

A block introduces a new scope where the name in an inner scope
may shadow one in an outer scope:

LISTING 1.1. Nested Scopes and Shadowing
1 val a = 1
2 val b = 2
3 val c = {
4 val a = 3
5 a + b
6 } + a

Here, the use of a on line 5 refers to the inner binding on line 4, while the
use of a on line 6 refers to the outer binding on line 1. Also note that the
use of b on line 5 refers to the binding of b in the outer scope, as b is not
bound in the inner one. The name c ends up being bound to the value 6.
In particular, after applying the environment, we end up evaluating the
expression 3 + 2 + 1. Note that value binding is not assignment. After
the inner binding of name a on line 4, the outer binding of name a still
exists but is simply hidden within that scope.

Scala uses static scoping (or also called lexical scoping), which means
that the binding that applies to the use of any name can be determined by

1.2. IS A PROGRAM EXECUTED OR EVALUATED? 9

examining the program text. Specifically, the binding that applies is not
dependent on evaluation order. For Scala, the rule is that for any use of a
name x, the innermost scope that (a) contains the use of x and (b) has a
binding for x is the one that applies. Note that there are only two scopes
in the above example (e.g., not one for each val declaration). Thus, the
following example has a compile-time error:

1 val a = 1
2 val b = {
3 val c = a // error: use of name a before its binding
4 val a = 2
5 c
6 }

In particular, the use of name a at line 3 refers to the binding at line 4, and
the use comes before the binding.

Consider again the nested scopes and shadowing example (Listing 1.1),
which is repeated below:

1 val a = 1
2 val b = 2
3 val c = {
4 val a = 3
5 a + b
6 } + a

How do we describe the evaluation of this expression? The substitution-
based evaluation rule for names described previously in subsection 1.2.3
needs to be more nuanced. In particular, eliminating the binding of the
name a in the outer scope should replace the use of name a on line 6 but
not the use of name a on line 5. In particular, applying the environment
[a 7→ 1,b 7→ 2] to lines 3 to 6 yields the following:

3 val c = {
4 val a = 3
5 a + 2
6 } + 1

This notion of substitution is directly linked to terms free and bound vari-
ables. In any given expression e, a bound variable is one whose binding
location is in e, while a free variable is one whose binding location is not
in e. For example, in the expression

val a = 3
a + b ,

10 1. INTRODUCTION AND PRELIMINARIES

variable a is bound, while variable b is free. Here, we are using the term
variable in the same sense as name in the above and from mathematical
logic rather than the notion of variable in imperative programming. The
notion of variable in imperative programming in contrast corresponds to
an updatable memory cell.

1.2.5. Function Definitions and Tuples. The most basic and perhaps
most important form of abstraction in programming languages is defin-
ing functions. Here’s an example Scala function:

def square(x: Int): Int = x * x

where x is a formal parameter of type Int for the function square that
returns a value of type Int. Schematically, a function definition has the
following form:

def x(x1: τ1, . . ., xn: τn): τ = e

where the formal parameter types τ1, . . . ,τn are always required and the
return type τ is sometimes required. However, we adopt the convention
of always giving the return type. This convention is good practice in doc-
umenting function interfaces, and it saves us from worrying about when
Scala actually requires or does not require it.

Note that braces {} are not part of the syntax of a function definition.
For example, the following code is valid:

def max(x: Int, y: Int): Int =
if (x > y)

x
else

y

As a convention, we will not use {} unless we need to introduce bindings.
We can easily return multiple values by returning a tuple. For exam-

ple, we can write a function divRem that takes two integers x and y and
returns a pair of their quotient and their remainder:

def divRem(x: Int, y: Int): (Int, Int) = (x / y, x % y)

A tuple is a simple data structure that combines a fixed number of values.
A n-tuple expression annotated with a n-tuple type is written as follows:

(e1, . . ., en): (τ1, . . ., τn) .

The i th component of a tuple e can be obtained using the expression e._i
following the example below:

1.3. RECURSION, INDUCTION, AND ITERATION 11

val divRemSevenThree: (Int, Int) = divRem(7, 3)
val divSevenThree: Int = divRemSevenThree._1
val remSevenThree: Int = divRemSevenThree._2

Another way to get the components of a tuple is using pattern matching:

val divRemSevenThree: (Int, Int) = divRem(7, 3)
val (divSevenThree, remSevenThree) = divRemSevenThree

Note that the bottom line is a binding of two names divSevenThree and
remSevenThree, which are bound to the first and second components of
the tuple divRemSevenThree, respectively. The parentheses () are nec-
essary in the code above. We will revisit pattern matching in detail in ??.

There is no 1-tuple type, but there is a 0-tuple type that is specially
called Unit. There is only one value of type Unit (also typically called
the unit value). We write down the unit value using the expression ()
(i.e., open-close parentheses). Conceptually, the unit value represents
“nothing interesting returned.” When we introduce side-effects, a func-
tion with return type Unit is a good indication that its only purpose is to
be executed for side effects because “nothing interesting” is returned. A
block that does not have a final expression (e.g., only has declarations)
implicitly returns the unit value:

val u: Unit = { }

Scala has an alternative syntax for functions that have a Unit return type:

def doNothing() { }

Specifically, the = is dropped and no type annotation is needed for the re-
turn type since it is fixed to be Unit. This syntax makes imperative Scala
code look a bit more like C or Java code.

1.3. Recursion, Induction, and Iteration

In our current subset of Scala, we have no way to repeat. A natu-
ral way to repeat is using recursive functions. Let us consider defining
a Scala function that computes factorial. Recall from discrete mathemat-
ics that factorial, written n!, corresponds to the number of permutations
of n elements and is defined as follows:

n!
def= n · (n −1) · · · · ·1

0!
def= 1 .

From the definition above, it is clear that factorial satisfies the following
equation for n ≥ 0:

(n +1)! = (n +1) · · ·n! .

12 1. INTRODUCTION AND PRELIMINARIES

Based on this equation, we can define a Scala function to compute facto-
rial as follows:

LISTING 1.2. Factorial: A Basic Implementation
def factorial(n: Int): Int =

if (n == 0) 1 else factorial(n - 1) * n

Let us write out some steps of evaluating factorial(3):

factorial(3)
−→ if (3 == 0) 1 else factorial(3 - 1) * 3
−→∗ factorial(2) * 3
−→∗ factorial(1) * 2 * 3
−→∗ factorial(0) * 1 * 2 * 3
−→∗ 1 * 1 * 2 * 3
−→∗ 6

where the sequence above is shorthand for expressing that each succes-
sive pair of expressions is related by the evaluation relation written be-
tween them.

1.3.1. Induction: Reasoning about Recursive Programs. Induction
is important proof technique for reasoning about recursively-defined ob-
jects that you might recall from a discrete mathematics course. Here, we
consider basic proofs of properties of recursive Scala functions.

The simplest form of induction is what we call mathematical induc-
tion, that is, induction over natural numbers. Intuitively, to prove a prop-
erty P over all natural numbers (i.e., ∀n ∈N.P (n)), we consider two cases:
(a) we prove the property holds for 0 (i.e., P (0)), which is called the base
case; and (b) we prove that the property holds for n+1 assuming it holds
for an n ≥ 0 (i.e., ∀n ∈N.(P (n) =⇒ P (n+1))), which is called the inductive
case.

As an example, let us prove that our Scala function factorial com-
putes the mathematical definition of factorial n!. To state this property
precisely, we need a way to relate mathematical numbers with Scala val-
ues. To do so, we use the notation xny to mean the Scala integer value
corresponding to the mathematical number n.

THEOREM 1.1. For all integers n such that n ≥ 0,

factorial(xny) −→∗ xn!y .

PROOF. By mathematical induction on n.

BASE CASE (n = 0). Note that x0y = 0. Taking a few steps of evalua-
tion, we have that

factorial(0) −→∗ 1 .

1.3. RECURSION, INDUCTION, AND ITERATION 13

Then, the Scala value 1 can also be written as x0!y because mathemati-
cally 0! = 1.

INDUCTIVE CASE (n = n′+1 for some n′ ≥ 0). The induction hypoth-
esis is as follows:

factorial(xn′y) −→∗ xn′!y .

Let us evaluate factorial(xny) a few steps, and we have the follow-
ing:

factorial(xny) −→∗ factorial(xn −1y) * xny

because we know that n 6= 0. Applying the induction hypothesis, we have
that

xny * factorial(xn −1y) −→∗ xn′!y * xny
noting that n′ = n −1. By further evaluation, we have that

xn′!y * xny −→ xn′! ·ny .

Note that n′! ·n = n ·n′! = n · (n −1)! = n!, which completes this case. �

In the above, we are actually using an abstract notion of evaluation
where Scala integer values are unbounded. In implementation, Scala in-
tegers are in fact 32-bit signed two’s complement integers that we have
ignored in our evaluation relation. It is often convenient to use abstract
models of evaluation to essentially separate concerns. Here, we use an
abstract model of evaluation to ignore overflow.

1.3.2. Pattern Matching. There is another style of writing recursive
functions using pattern matching that looks somewhat closer to structure
of an inductive proof. For example, we can write an implementation of
factorial equivalent to Listing 1.2 as follows:

LISTING 1.3. Factorial: With Pattern Matching
def factorial(n: Int): Int = n match {

case 0 => 1
case _ => factorial(n - 1) * n

}

The match expression has the following form:

e match {
case pattern1 => e1

. . .
case patternn => en

}

14 1. INTRODUCTION AND PRELIMINARIES

and evaluates by comparing the value of expression e against the pat-
terns given by the cases. Patterns are tried in sequence from pattern1
to patternn . Evaluation continues with the corresponding expression for
the first pattern that matches. Again, we will revisit pattern matching in
detail in ??. For the moment, simply recognize that patterns in general
bind names (like seen previously in subsection 1.2.5). In Listing 1.3, we
use the “wildcard” pattern _ to match anything that is non-zero.

1.3.3. Function Preconditions. The definitions of factorial given
in both Listing 1.2 and Listing 1.3 implicitly assume that they are called
with non-negative integer values. Consider evaluating factorial(-2):

factorial(-2)
−→∗ factorial(-3) * -2
−→∗ factorial(-4) * -2 * -3
−→∗ factorial(-5) * -2 * -3 * -4
−→∗

We see that we have non-termination with infinite recursion. In imple-
mentation, we recurse until the run-time yields a stack overflow error.

Following principles of good design, we should at least document in
a comment the requirement on the input parameter n that it should be
non-negative. In Scala, we do something a bit better in that we can spec-
ify such preconditions in code:

LISTING 1.4. Factorial: With a Specified Precondition
def factorial(n: Int): Int = {

require(n >= 0)
n match {

case 0 => 1
case _ => factorial(n - 1) * n

}
}

If this version of factorial is called with a negative integer, it will result
in a run-time exception. The require function does nothing if its argu-
ment evaluates to true and otherwise throws an exception if its argument
evaluates to false.

For factorial, it is clear that the require will never fail in any re-
cursive call. We really only need to check the initial n from the initiating
call to factorial. One way we can do this is to use a helper function that
actually performs the recursive computation:

LISTING 1.5. Factorial: Separating the Precondition from
the Recursion

1.3. RECURSION, INDUCTION, AND ITERATION 15

def factorial(n: Int): Int = {
require(n >= 0)
def factorialRecurse(n: Int): Int = n match {

case 0 => 1
case _ => factorialRecurse(n - 1) * n

}
factorialRecurse(n)

}

Here, the factorialRecurse function is local to the factorial func-
tion. The factorialRecurse does not do any checking on its argument,
but the require check in factorialwill ensure that factorialRecurse
always terminates.

1.3.4. Iteration: Tail Recursion with an Accumulator. Examining the
evaluation of the various versions of factorial in this section, we ob-
serve that they all behave similarly: (1) the recursion builds up an expres-
sion consisting of a sequence of multiplication * operations, and then (2)
the multiplication operations are evaluated to yield the result. In a typical
run-time system, step (1) grows the call stack of activation records with
recursive calls recording pending evaluation (i.e., the * operation), and
each individual * operation in step (2) is executed while unwinding the
call stack on return. Our abstract notation for evaluation does not repre-
sent a call stack implicitly, but we can see the corresponding behavior in
the growing “pending” expression.

Not all recursive functions require a call stack of activation records. In
particular, when there’s nothing left to do on return, there is no “pending
computation” to record. This kind of recursive function is called tail re-
cursive. A tail recursive version of the factorial function is given below in
Listing 1.6.

LISTING 1.6. Tail Recursive Factorial: Using an Accumulator
def factorial(n: Int): Int = {

require(n >= 0)
def factorialIter(n: Int, acc: Int): Int = n match {

case 0 => acc
case _ => factorialIter(n - 1, acc * n)

}
factorialIter(n, 1)

}

16 1. INTRODUCTION AND PRELIMINARIES

Let us write out some steps of evaluating factorial(3) for this ver-
sion:

factorial(3)
−→ factorialIter(3, 1)
−→∗ factorialIter(2, 1 * 3)
−→ factorialIter(2, 3)
−→∗ factorialIter(1, 3 * 2)
−→ factorialIter(1, 6)
−→∗ factorialIter(0, 6 * 1)
−→ factorialIter(0, 6)
−→∗ 6

Observe that the acc variable serves to accumulate the result. When
we reach the base case (i.e., 0), then we simply return the accumulator
variable acc. Notice that there is no expression gets built up during the
course of the recursion. When the last call to factorialIter returns,
we have the final result. It is an important optimization for compilers to
recognize tail recursion and avoid building a call stack unnecessarily.

A tail recursive function corresponds closely to a loop (e.g., a while
loop in language like Java) but does not require mutation. For example,
consider the following version of factorial in Java using a while loop
and variable assignment:

int factorial(int n) {
int acc = 1;
while (n > 0) {

acc = acc * n;
n = n - 1;

}
return acc;

}

Conceptually, each iteration of the while loop corresponds to a call of
factorialIter. The value of acc and n in each iteration of the while
loop correspond to the values bound to acc and n on each recursive call
to factorialIter.

1.4. LAB 1 17

1.4. Lab 1

1.4.1. Scala Basics: Binding and Scope. For each the following uses
of names, give the line where that name is bound. Briefly explain your
reasoning (in no more than 1–2 sentences).

(1) Consider the following Scala code.

1 val pi = 3.14
2 def circumference(r: Double): Double = {
3 val pi = 3.14159
4 2.0 * pi * r
5 }
6 def area(r: Double): Double =
7 pi * r * r

The use of pi at line 4 is bound at which line? The use of pi at
line 7 is bound at which line?

(2) Consider the following Scala code.

1 val x = 3
2 def f(x: Int): Int =
3 x match {
4 case 0 => 0
5 case x => {
6 val y = x + 1
7 ({
8 val x = y + 1
9 y

10 } * f(x - 1))
11 }
12 }
13 val y = x + f(x)

The use of x at line 3 is bound at which line? The use of x at line 6
is bound at which line? The use of x at line 10 is bound at which
line? The use of x at line 13 is bound at which line?

1.4.2. Scala Basics: Typing. In the following, I have left off the return
type of function g. The body of g is well-typed if we can come up with a
valid return type. Is the body of g well-typed?

1 def g(x: Int) = {
2 val (a, b) = (1, (x, 3))
3 if (x == 0) (b, 1) else (b, a + 2)

18 1. INTRODUCTION AND PRELIMINARIES

4 }

If so, give the return type of g and explain how you determined this type.
For this explanation, first, give the types for the names a and b. Then,
explain the body expression using the following format:

e : τ because
e1 : τ1 because

. . .
e2 : τ2 because

. . .

where e1 and e2 are subexpressions of e. Stop when you reach values (or
names).

As an example of the suggested format, consider the plus function:

def plus(x: Int, y: Int) = x + y

Yes, the body expression of plus is well-typed with type Int.

x + y : Int because
x : Int
y : Int

1.4.3. Run-Time Library. Most languages come with a standard li-
brary with support for things like data structures, mathematical oper-
ators, string processing, etc. Standard library functions may be imple-
mented in the object language (perhaps for portability) or the meta lan-
guage (perhaps for implementation efficiency).

For this question, we will implement some library functions in Scala,
our meta language, that we can imagine will be part of the run-time for
our object language interpreter. In actuality, the main purpose of this
exercise is to warm-up with Scala.

(1) Write a function abs

def abs(n: Double): Double

that returns the absolute value of n. This a function that takes
a value of type Double and returns a value of type Double. This
function corresponds to the JavaScript library function Math.abs.

Instructor Solution: 1 line.
(2) Write a function xor

def xor(a: Boolean, b: Boolean): Boolean

that returns the exclusive-or of a and b. The exclusive-or returns
true if and only if exactly one of a or b is true. For practice, do
not use the Boolean operators. Instead, only use the if-else ex-
pression and the Boolean literals (i.e., true or false).

1.4. LAB 1 19

Instructor Solution: 4 lines (including 1 line for a closing
brace).

1.4.4. Run-Time Library: Recursion.

(1) Write a recursive function repeat

def repeat(s: String, n: Int): String

where repeat(s, n) returns a string with n copies of s concate-
nated together. For example, repeat("a",3) returns "aaa". This
function corresponds to the function goog.string.repeat in the
Google Closure library.

Instructor Solution: 4 lines (including 1 line for a closing
brace).

(2) In this exercise, we will implement the square root function—
Math.sqrt in the JavaScript standard library. To do so, we will
use Newton’s method (also known as Newton-Raphson).

Recall from Calculus that a root of a differentiable function
can be iteratively approximated by following tangent lines. More
precisely, let f be a differentiable function, and let x0 be an ini-
tial guess for a root of f . Then, Newton’s method specifies a se-
quence of approximations x0, x1, . . . with the following recursive
equation:7

xn+1 = xn − f (xn)

f ′(xn)
.

The square root of a real number c for c > 0, written
p

c, is a
positive x such that x2 = c. Thus, to compute the square root of
a number c, we want to find the positive root of the function:

f (x) = x2 − c .

Thus, the following recursive equation defines a sequence of ap-
proximations for

p
c:

xn+1 = xn − x2
n − c

2xn
.

(a) First, implement a function sqrtStep

def sqrtStep(c: Double, xn: Double): Double

that takes one step of approximation in computing
p

c (i.e., com-
putes xn+1 from xn).
Instructor Solution: 1 line.

(b) Next, implement a function sqrtN

7The following link is a refresher video on this algorithm: http://www.youtube.
com/watch?v=1uN8cBGVpfs, January 2012

http://www.youtube.com/watch?v=1uN8cBGVpfs
http://www.youtube.com/watch?v=1uN8cBGVpfs

20 1. INTRODUCTION AND PRELIMINARIES

def sqrtN(c: Double, x0: Double, n: Int): Double

that computes the nth approximation xn from an initial guess
x0. You will want to call sqrtStep implemented in the previous
part.
Challenge yourself to implement this function using recursion
and no mutable variables (i.e., vars)—you will want to use a re-
cursive helper function. It is also quite informative to compare
your recursive solution with one using a while loop.
Instructor Solution: 7 lines (including 2 lines for closing braces
and 1 line for a require).

(c) Now, implement a function sqrtErr

def sqrtErr(c: Double, x0: Double,
epsilon: Double): Double

that is very similar to sqrtN but instead computes approxima-
tions xn until the approximation error is within ε (epsilon), that
is,

|x2
n − c| < ε .

You can use your absolute value function abs implemented in a
previous part. A wrapper function sqrt is given in the template
that simply calls sqrtErr with a choice of x0 and epsilon.
Again, challenge yourself to implement this function using re-
cursion and compare your recursive solution to one with a while
loop.
Instructor Solution: 5 lines (including 1 line for a closing brace
and 1 line for a require).

1.4.5. Data Structures Review: Binary Search Trees. In this ques-
tion, we will review implementing operations on binary search trees from
Data Structures. Balanced binary search trees are common in standard
libraries to implement collections, such as sets or maps. For example,
the Google Closure library for JavaScript has goog.structs.AvlTree. For
simplicity, we will not worry about balancing in this question.

Trees are important structures in developing interpreters, so this ques-
tion is also critical practice in implementing tree manipulations.

A binary search tree is a binary tree that satisfies an ordering invari-
ant. Let n be any node in a binary search tree whose data value is d , left
child is l , and right child is r . The ordering invariant is that all of the data
values in the subtree rooted at l must be < d , and all of the data values in
the subtree rooted at r must be ≥ d .

1.4. LAB 1 21

We will represent a binary trees containing integer data using the fol-
lowing Scala case classes and case objects:

sealed abstract class SearchTree
case object Empty extends SearchTree
case class Node(l: SearchTree, d: Int, r: SearchTree) extends SearchTree

A SearchTree is either Empty or a Node with left child l, data value d,
and right child r.

For this question, we will implement the following four functions.

(1) The function repOk

def repOk(t: SearchTree): Boolean

checks that an instance of SearchTree is valid binary search tree.
In other words, it checks using a traversal of the tree the ordering
invariant. This function is useful for testing your implementa-
tion. A skeleton of this function has been provided for you in the
template.

Instructor Solution: 7 lines (including 2 lines for closing braces).
(2) The function insert

def insert(t: SearchTree, n: Int): SearchTree

inserts an integer into the binary search tree. Observe that the
return type of insert is a SearchTree. This choice suggests a
functional style where we construct and return a new output tree
that is the input tree t with the additional integer n as opposed
to destructively updating the input tree.

Instructor Solution: 4 lines (including 1 line for a closing
brace).

(3) The function deleteMin

def deleteMin(t: SearchTree): (SearchTree, Int)

deletes the smallest data element in the search tree (i.e., the left-
most node). It returns both the updated tree and the data value
of the deleted node. This function is intended as a helper func-
tion for the delete function. Most of this function is provided in
the template.

Instructor Solution: 9 lines (including 2 lines for closing braces
and 1 line for a require).

(4) The function delete

def delete(t: SearchTree, n: Int): SearchTree

22 1. INTRODUCTION AND PRELIMINARIES

removes the first node with data value equal to n. This function
is trickier than insert because what should be done depends
on whether the node to be deleted has children or not. We ad-
vise that you take advantage of pattern matching to organize the
cases.

Instructor Solution: 10 lines (including 2 lines for closing
braces).

1.4.6. JavaScripty Interpreter: Numbers. JavaScript is a complex lan-
guage and thus difficult to build an interpreter for it all at once. In this
course, we will make some simplifications. We consider subsets of Java-
Script and incrementally examine more and more complex subsets dur-
ing the course of the semester. For clarity, let us call the language that we
implement in this course JAVASCRIPTY.

For the moment, let us define JAVASCRIPTY to be a proper subset of Ja-
vaScript. That is, we may choose to omit complex behavior in JavaScript,
but we want any programs that we admit in JAVASCRIPTY to behave in the
same way as in JavaScript.

In actuality, there is not one language called JavaScript but a set of
closely related languages that may have slightly different semantics. In
deciding how a JAVASCRIPTY program should behave, we will consult a
reference implementation that we fix to be Google’s V8 JavaScript Engine.
We will run V8 via Node.js, and thus, we will often need to write little test
JavaScript programs and run it through Node.js to see how the test should
behave.

In this lab, we consider an arithmetic sub-language of JavaScript (i.e.,
an extremely basic calculator). The first thing we have to consider is how
to represent a JAVASCRIPTY program as data in Scala, that is, we need to be
able to represent a program in our object/source language JAVASCRIPTY

as data in our meta/implementation language Scala.
To a JAVASCRIPTY programmer, a JAVASCRIPTY program is a text file—

a string of characters. Such a representation is quite cumbersome to
work with as a language implementer. Instead, language implementa-
tions typically work with trees called abstract syntax trees (ASTs). What
strings are considered JAVASCRIPTY programs is called the concrete syntax
of JAVASCRIPTY, while the trees (or terms) that are JAVASCRIPTY programs
is called the abstract syntax of JAVASCRIPTY. The process of converting
a program in concrete syntax (i.e., as a string) to a program in abstract
syntax (i.e., as a tree) is called parsing.

For this lab, a parser is provided for you that reads in a JAVASCRIPTY

program-as-a-string and converts into an abstract syntax tree. We will
represent abstract syntax trees in Scala using case classes and case objects.

1.4. LAB 1 23

sealed abstract class Expr
case class N(n: Double) extends Expr

N(n) n
case class Unary(uop: Uop, e1: Expr) extends Expr

Unary(uop, e1) uope1

case class Binary(bop: Bop, e1: Expr, e2: Expr) extends Expr
Binary(bop, e1, e2) e1 bop e2

sealed abstract class Uop
case object Neg extends Uop

Neg −

sealed abstract class Bop
case object Plus extends Bop

Plus +
case object Minus extends Bop

Minus −
case object Times extends Bop

Times ∗
case object Div extends Bop

Div /

FIGURE 1.1. Representing in Scala the abstract syntax of
JAVASCRIPTY. After each case class or case object, we show
the correspondence between the representation and the
concrete syntax.

The correspondence between the concrete syntax and the abstract syntax
representation is shown in Figure 1.1.

(1)

INTERPRETER 1.1. Implement the eval function

def eval(e: Expr): Double

that evaluates a JAVASCRIPTY expression e to the Scala double-
precision floating point number corresponding to the value of
e.

Consider a JAVASCRIPTY program e; imagine e stands for the concrete
syntax or text of the JAVASCRIPTY program. This text is parsed into a
JAVASCRIPTY AST e, that is, a Scala value of type Expr. Then, the result
of eval is a Scala number of type Double and should match the interpre-
tation of e as a JavaScript expression. These distinctions can be subtle

24 1. INTRODUCTION AND PRELIMINARIES

but learning to distinguish between them will go a long way in making
sense of programming languages.

At this point, you have implemented your first language interpreter!

CHAPTER 2

Approaching a Programming Language

We have studied subsets of Scala up to this point mostly by example.
At some point, we may wonder (1) what are all the Scala programs that
we can write, and (2) what do they mean? The answer to question (1) is
given by a definition of Scala’s syntax, while the answer to question (2) is
given by a definition of Scala’s semantics.

As a language designer, it is critical to us that we define unambigu-
ously the syntax and semantics so that everyone understands our intent.
Language users need to know what they can write and how the programs
they write will execute as alluded to in the previous paragraph. Language
implementers need to know what are the possible input strings and what
they mean in order to produce semantically-equivalent output code.

2.1. Syntax: Grammars and Scoping

Stated informally, the syntax of a language is concerned with the form
of programs, that is, the strings that we consider programs. The seman-
tics of a language is concerned with the meaning of programs, that is,
how programs evaluate. Because there an unbounded number of pos-
sible programs in a language, we need tools to speak more abstractly
about them. Here, we focus on describing the syntax of programming
languages. We will consider defining the semantics of programming lan-
guages in section 3.1.

The concrete syntax of a programming language is concerned with
how to write down expressions, statements, and programs as strings. Con-
crete syntax is the primary interface between the language user and the
language implementation. Thus, the design of concrete syntax focuses
on improving readability and perhaps writability for software develop-
ers. There are significant sociological considerations, such as appealing
to tradition (e.g., using curly braces { . . . } to denote blocks of statements).
A large part of concrete syntax design is a human-computer interaction
problem, which is outside of what we can consider in this course.

The abstract syntax of a programming language is the representation
of programs used by language implementations and thus an important
mental model for language implementers and language users. We will

25

26 2. APPROACHING A PROGRAMMING LANGUAGE

draw out precisely the distinction between concrete and abstract syntax
in this section.

2.1.1. Context-Free Languages and Context-Free Grammars. A lan-
guage L is a set of strings composed of characters drawn from some al-
phabet Σ (i.e., L ⊆ Σ∗). A string in a language is sometimes called a sen-
tence.

The standard way to describe the concrete syntax of a language is
using context-free grammars. A context-free grammar is a way to de-
scribe a class of languages called context-free languages. A context-free
grammar defines a language inductively and consists of terminals, non-
terminals, and productions. Terminals and non-terminals are generically
called symbols. The terminals of a grammar correspond to the alphabet
of the language being defined and are the basic building blocks. Non-
terminals are defined via productions and conceptually recognize a se-
quence of symbols belonging to a sublanguage. A production has the
form N ::= α where N is a non-terminal from the set of non-terminals
N and α is a sequence of symbols (i.e., α ∈ (Σ∪N)∗). A set of of pro-
ductions with the same non-terminal, such as N ::= α1, . . . , N ::= αn , is
usually written with one instance of the non-terminal and the right-hand
sides separated by |, such as N ::= α1 | · · · | αn . Such a set of productions
can be read informally as, “N is generated by either α1, . . ., or αn .” For
any non-terminal N , we can talk about the language or syntactic category
defined by that non-terminal.

As an example, let us consider defining a language of integers as fol-
lows:

integers i ::= −n | n
numbers n ::= d | d n
digits d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

with the alphabet Σ
def= {0,1,2,3,4,5,6,7,8,9,−}. We identify the overall

language by the start non-terminal (also called the start symbol). By con-
vention, we typically consider the non-terminal listed first as the start
non-terminal. Here, we have strings like 1, 2, 42, 100, and −7 in our
language of integers. Note that strings like 012 and −0 are also in this
language.

2.1.1.1. Derivation of a Sentence in a Grammar. Formally, a string is
in the language described by a grammar if and only if we can give a deriva-
tion for it from the start symbol. We say a sequence of symbols β is de-
rived from another sequence of symbols α, written as

α =⇒ β ,

2.1. SYNTAX: GRAMMARS AND SCOPING 27

when β is obtained by replacing a non-terminal N in α with the right-
hand side of a production of N . We can give a witness that a string s be-
longs to a language by showing derivation steps from the start symbol to
the string s. For example, we show that 012 is in the language of integers
defined above:

i =⇒ n
=⇒ d n
=⇒ 0 n
=⇒ 0 d n
=⇒ 01 n
=⇒ 01 d
=⇒ 012 .

In the above, we have shown a leftmost derivation, that is, one where we
always choose to expand the leftmost non-terminal. We can similarly de-
fine a rightmost derivation. Note that there are typically several deriva-
tions that witness a string belonging the language described by a gram-
mar.

We can now state precisely the language described by a grammar. Let
L (G) be the language described by grammar G over the alphabet Σ, start
symbol S, and derivation relation =⇒. We define the relation α=⇒∗ β as
holding if and only if β can be derived from α with the one-step deriva-
tion relation =⇒ in zero or more steps (i.e., =⇒∗ is the reflexive-transitive
closure of =⇒). Then, L (G) is defined as follows:

L (G)
def= {

s
∣∣ s ∈Σ∗ and S =⇒∗ s

}
.

2.1.2. Lexical and Syntactic. In language implementations, we of-
ten want to separate the simple grouping of characters from the iden-
tification of structure. For example, when we read the string 23 + 45,
we would normally see three pieces: the number twenty-three, the plus
operator, and the number forty-five, rather than the literal sequence of
characters ‘2’, ‘3’, ‘ ’, ‘+’, ‘ ’, ‘4’, and ‘5’.

Thus, it is common to specify the lexical structure of a language sep-
arately from the syntactic structure. The lexical structure is this simple
grouping of characters, which is often specified using regular expressions.
A lexer transforms a sequence of literal characters into a sequence of lex-
emes classified into tokens. For example, a lexer might transform the
string "23+45" into the following sequence:

num("23"),+,num("45")

consisting of three tokens: a num token with lexeme "23", a plus token
with lexeme "+", and a num token with lexeme "45". Since there is only

28 2. APPROACHING A PROGRAMMING LANGUAGE

one possible lexeme for the plus token, we abuse notation slightly and
name the token by the lexeme.

A parser then recognizes strings of tokens, typically specified using
context-free grammars. For example, we might define a language of ex-
pressions with numbers and the plus operator:

expr ::= num | expr + expr .

Note that num is a terminal in this grammar.
There is an analogy to parsing sentences in natural languages. Group-

ing letters into words in a sentence corresponds essentially to lexing, while
classifying words into grammatical elements (e.g., nouns, verbs, noun
phrases, verb phrases) corresponds to parsing.

2.1.3. Ambiguous Grammars. Consider the following arithmetic ex-
pression:

100/10/5 .

Should it be read as (100/10)/5 or 100/(10/5)? The former equals 2, while
the latter equals 50. In mathematics, we adopt conventions that, for ex-
ample, choosing the former over the latter.

Now consider a language implementation that is given the following
input:

100/10/5 .

Which reading should it take? In particular, consider the grammar

e ::= n | e / e

where n is the terminal for numbers. We can diagram the two ways of
reading the string 100/10/5 as shown in Figures 2.1c and 2.1d where we
write the lexemes for the n tokens in parentheses for clarity. These di-
agrams are called parse trees, and they are another way to demonstrate
that a string is the language described by a grammar. In a parse tree,
a parent node corresponds to a non-terminal where its children corre-
spond to the sequence of symbols in a production of that non-terminal.
Parse trees capture syntactic structure and distinguishes between the two
ways of “reading” 100/10/5. We call the grammar given above ambigu-
ous because we can witness a string that is “read” in two ways by giving
two parse trees for it.

As an aside, in this way, a parse tree can be viewed as “recognizing”
a string by a grammar in a “bottom-up manner.” In contrast, derivations
intuitively capture generating strings described a grammar in a “top-down
manner.”

Can we rewrite the above grammar to make it unambiguous? That is,
can we rewrite the above grammar such that the set of strings accepted

2.1. SYNTAX: GRAMMARS AND SCOPING 29

e ::= n | e / e

(A) Grammar.

100/10/5
(B)
String.

e

e

e

n(100)

/ e

n(10)

/ e

n(5)

(C) Parse tree.

e

e

n(100)

/ e

e

n(10)

/ e

n(5)

(D) Parse tree.

FIGURE 2.1. An ambiguous grammar is exhibited by two
parse trees for a string in the language described by the
grammar.

Ambiguous Unambiguous

Left Recursive Right Recursive

e ::= n | e / e e ::= n | e / n e ::= n | n / e

FIGURE 2.2. Rewriting a grammar to eliminate ambiguity
with respect to associativity.

by the grammar is the same but is also unambiguous. Yes, we can rewrite
the above grammar in two ways to eliminate ambiguity as shown in Fig-
ure 2.2. One grammar is left recursive, that is, the production e ::= e / n is
recursive only on the left of the binary operator token /. Analogously, we
can write a right recursive grammar that accepts the same strings. Intu-
itively, these grammars enforce a particular linearization of the possible
parse trees: either to the left or to the right as shown in Figure 2.3. As a
terminological shorthand, we say that a binary operator is left associative
to mean that expression trees involving that operator are linearized to the
left, as in Figure 2.3c). Analogously, a binary operator is right associative
means expression trees involving that operator are linearized to the right,
as in Figure 2.3e.

A related syntactic issue appears when we consider multiple opera-
tors, such as the ambiguous grammar in Figure 2.4. For example, the
string

10−10/10

30 2. APPROACHING A PROGRAMMING LANGUAGE

100/10/5
(A)
String.

e ::= n | e / n

(B) Left-recursive.

e

e

e

n(100)

/ n(10)

/ n(5)

(C) Parse tree.

e ::= n | n / e

(D) Right-recursive.

e

n(100) / e

n(10) / e

n(5)

(E) Parse tree.

FIGURE 2.3. Grammars that enforce a particular associativity.

Ambiguous Unambiguous

e ::= n | e / e | e − e
e ::= f | e − f
f ::= n | f / n

FIGURE 2.4. Rewriting a grammar to eliminate ambiguity
and enforce a particular associativity (left for both opera-
tors) and precedence (/ higher than −).

has two parse trees corresponding to the following two readings:

(10−10)/10 or 10−(10/10) .

We may want to enforce that the / operator “binds tighter,” that is, has
higher precedence than the − operator, which corresponds to the read-
ing on the right. To enforce the desired precedence, we can refactor the
ambiguous grammar into the unambiguous one shown in Figure 2.4. We
layer the grammar by introducing a new non-terminal f that describes
expressions with only / operator. The non-terminal f is left recursive,
so we enforce that / is left associative. The start non-terminal e can be
either an f or an expression with a − operator. Intuitively from a top-
down, derivation perspective, once e =⇒ f , then there is no way to derive
a − operator. Thus, in any parse tree for a string that includes both − and
/ operators, the − operators must be “higher” in the tree. Note that higher

2.1. SYNTAX: GRAMMARS AND SCOPING 31

precedence means “binding tighter” or “lower in the parse tree” and sim-
ilarly for lower precedence.

An important observation is that ambiguity is a syntactic concern:
which tree do we get when we parse a string? This concern is different
than and distinct with respect to what do the / or the − operators mean
(e.g., perhaps division and subtraction), that is, the semantics of our ex-
pression language or to what value does an expression evaluate. The is-
sue is the same if we consider a language with a pair operators that have
a less ingrained meaning, such as @ and #.

If we know semantics of the language, then we can sometimes probe
to determine associativity or precedence. For example, let us suppose we
are interested in seeing what is relative precedence of the / and − oper-
ators in Scala. Knowing that / means division and − means subtraction,
then observing the value of the expression 10−10/10 tells us the relative
precedence of these two operators. Specifically, if the value is 9, then / has
higher precedence, but if the value is 0, then − has higher precedence.

2.1.4. Abstract Syntax. Consider again the grammar of expressions
involving the / and − operators in Figure 2.4, with subscripts to make
explicit the instances of the symbols:

e ::= n | e1 / e2 | e1 − e2

To represent expressions e in Scala, we declare the following types and
case classes:

sealed abstract class Expr
case class N(n: Int) extends Expr
case class Divide(e1: Expr, e2: Expr) extends Expr
case class Minus(e1: Expr, e2: Expr) extends Expr

We define a new type Expr (i.e., an abstract class). Each case class is a
constructor for an expression e of type Expr corresponding to one of the
productions defining the non-terminal e.

If we rewrite the above grammar to use these constructor names in
each production, we get the following:

e ∈ Expr ::= N(n) | Divide(e1, e2) | Minus(e1, e2) .

An example sentence in this language is

Minus(N(10), Divide(N(10), N(10))) ,

which corresponds to the following sentence in the first grammar:

10−10/10 .

Observe that a different sentence in the second grammar

Divide(Minus(N(10), N(10)), N(10))

32 2. APPROACHING A PROGRAMMING LANGUAGE

also corresponds to 10−10/10. While the first grammar is ambiguous,
the second one is unambiguous.

In a language implementation, we do not want to be constantly wor-
rying about the “grouping” or parsing of a string (i.e., resolving ambigu-
ity), so we prefer to work with terms in this second grammar. We call
this second grammar, abstract syntax, where the tree structure is evident.
Each instance of case class is a node in an n-ary tree and each argument
of a non-terminal type to a constructor is a sub-tree. For example, the
term Minus(N(10), Divide(N(10), N(10))) can be read visually as the fol-
lowing:

Minus

N(10) Divide

N(10) N(10)

And thus the first phase of language tool is the parser that converts the
concrete syntax of strings into the abstract syntax of terms.

Because the concrete syntax is more concise visually and human fri-
endly, it is standard practice to give (ambiguous) grammars like the first
grammar above and treat them as the corresponding abstract syntax spec-
ification given in the second grammar. In other words, we give a grammar
that define the strings of a language and leave it as an implementation
detail of the parser to convert strings to the appropriate terms or abstract
syntax trees. We even often draw abstract syntax trees using concrete syn-
tax notation, such as

−

10 /

10 10 .

2.2. Structural Induction

As we have seen, a convenient way to represent programs for manipu-
lation by algorithms are as abstract syntax trees. In Scala, case classes are
particularly useful for representing trees. Operations over trees are natu-
rally given by recursive traversals, and pattern matching makes it easier
to implement such recursive walks over abstract syntax trees.

2.2. STRUCTURAL INDUCTION 33

In section 1.3, we saw that there is a tight connection between recur-
sive programs and inductive reasoning. Learning to think inductively en-
ables us to more easily implement correct, complex recursive traversals
that are requisite for implementing any language tools.

Here, we introduce the concept of structural induction that enables
us to reason not just over natural numbers but over any inductive type.
Like in subsection 1.3.1, we focus on proving properties of recursive pro-
grams really with the goal of learning to think inductively.

2.2.1. Structural Induction over Lists. Consider the definition of Scala
lists (simplified):

sealed abstract class List[T]
case object Nil extends List[Nothing]
case class ::[T](head: T, tail: List[T]) extends List[T]

Let us consider the possibles values of type List[Int], for example. Here’s
what this set looks like schematically:

{ Nil,
0 :: Nil, 1 :: Nil, −1 :: Nil, . . . ,
0 :: 0 :: Nil, 1 :: 0 :: Nil, −1 :: 0 :: Nil, . . . ,
0 :: 1 :: Nil, 1 :: 1 :: Nil, −1 :: 1 :: Nil, . . . }

This set is inductively defined and can be viewed as generated by apply-
ing “rules” corresponding to Nil and ::. Thus, we have an induction prin-
ciple for proving properties about List[T] values. Intuitively, to prove a
property P over all List[T] values (i.e., ∀l : List[T].P (l)), we consider two
cases: (a) we prove that the property holds for Nil, that is, P (Nil)—a base
case; and (b) we prove that the property holds for h::t assuming it holds
for t (for any h : T and any t : List[T]), that is, ∀h : T, t : List[T].(P (t) =⇒
P (h :: t))—an inductive case. Notice the similarity to mathematical in-
duction described in subsection 1.3.1. In fact, mathematical induction is
simply a special case of structural induction over natural numbers.

As an example, consider the definition of list append given in List-
ing 2.1. Let us show that append terminates for any input. This property
is extremely simple, but it illustrates the structure of such a proof.

LISTING 2.1. List Append
def append[T](xl: List[T], yl: List[T]): List[T] =

xl match {
case Nil => yl
case xh :: xt => xh :: append(xt, yl)

}

34 2. APPROACHING A PROGRAMMING LANGUAGE

THEOREM 2.1 (Termination of append). For all values xl and yl of type
List[T],

append(xl, yl) −→∗ l

for some value l .

PROOF. By structural induction on xl.

BASE CASE (xl = Nil). Taking a few steps of evaluation, we have that

append(xl, yl)= append(Nil, yl)

−→∗ yl (by the definition of append)

Note that yl is a value, so this case is complete.

INDUCTIVE CASE (xl = h::t for some values h : T and t : List[T]). The
induction hypothesis is as follows:

append(t , yl) −→∗ tl for some value tl.

Let us evaluate append(xl, yl) a few steps, and we have the following:

append(xl, yl)= append(h::t , yl)

−→∗ h :: append(t , yl) (by the definition of append)

By the induction hypothesis (i.h.) on t , we have that

append(t , yl)−→∗ tl .

for some value tl. Thus, we have that

h :: append(t , yl)−→∗ h::tl

Note that h::tl is a value, so this case is complete.

�

There are a number of key things to observe about the above proof.
First, we chose xl as the induction variable. We have two inductively de-
fined values xl and yl over which we are universally quantifying, so we
could induct on either one. However, xl is the only choice that will allow
us to complete this proof. Choosing the appropriate structure on which
to apply induction can get tricky in general and sometimes requires trial-
and-error. However, for correctness of recursive functions, choosing the
value on which the recursion is over is almost always a good choice. In
this case, append in Listing 2.1 is defined recursively over its first argu-
ment (i.e., xl).

Once the induction variable is chosen, the “proof template” is au-
tomatic. There is a case for each way the value could be constructed
(e.g., Nil and :: in the case of List[T] values). Any case that has a sub-
component of the inductively-defined type is an inductive case (e.g., ::),

2.2. STRUCTURAL INDUCTION 35

while any case that does not is a base case (e.g., Nil). Furthermore, the
inductive hypothesis is also automatic in each inductive case—the prop-
erty being proven is assumed to hold for any sub-component of the in-
ductively-defined type (e.g., the tail of the list). Once you get familiar
enough with induction, it becomes acceptable to leave off stating the in-
duction hypothesis, as it is understood. When applying the induction hy-
pothesis, it is important to state to which sub-component the induction
hypothesis is being applied, as in some inductively-defined types there
can be multiple sub-components. In the above, for example, we stated
that the induction hypothesis was applied to the tail list t .

To see the “template” for such inductive proofs. Let us consider a
proof of correctness of append stated somewhat informally. Again, this
proof is extremely simple, but you can easily compare and contrast this
proof with the one for Theorem 2.1.

THEOREM 2.2 (Correctness of append). For all values xl and yl of type
List[T],

append(xl, yl) −→∗ l

where l is the list value with the elements of xl followed by the elements of
yl.

PROOF. By structural induction on xl.

BASE CASE (xl = Nil). Taking a few steps of evaluation, we have that

append(xl, yl)= append(Nil, yl)

−→∗ yl (by the definition of append)

Since xl is empty (i.e., Nil), the list containing the elements of xl followed
by the elements of yl is exactly yl.

INDUCTIVE CASE (xl = h::t for some values h : T and t : List[T]). The
induction hypothesis is as follows:

append(t , yl) −→∗ tl

where tl is the list value with the elements of t followed by the elements
of yl.

Let us evaluate append(xl, yl) a few steps, and we have the following:

append(xl, yl)= append(h::t , yl)

−→∗ h :: append(t , yl) (by the definition of append)

By the induction hypothesis (i.h.) on t , we have that

append(t , yl)−→∗ tl .

36 2. APPROACHING A PROGRAMMING LANGUAGE

where tl is the list value with the elements of t followed by the elements
of yl. Thus, we have that

h :: append(t , yl)−→∗ h::tl

Since xl = h::t , then h::tl is the list with the elements of xl followed by the
elements of yl.

�

2.2.2. Structural Induction over Abstract Syntax Trees. Recall that
structural induction works for any inductively-defined type. Of partic-
ular importance to us is structural induction over abstract syntax trees.
Consider the interpreter eval for the simple arithmetic language shown
in Listing 2.2. We want to show that our interpreter implementation is
correct.

LISTING 2.2. Evaluation of Arithmetic Expressions
expressions e ::= n | −e1 | e1 +e2

integers n

sealed abstract class Expr
case class N(n: Int) extends Expr
case class Neg(e1: Expr) extends Expr
case class Plus(e1: Expr, e2: Expr) extends Expr

def eval(e: Expr): Int = e match {
case N(n) => n
case Neg(e1) => eval(e1)
case Plus(e1, e2) => eval(e1) + eval(e2)

}

Let us first define what it means to be correct. For any Scala value e of
type Expr, we define a function �e� that gives the mathematical integer
that we want to correspond to e. In particular, we inductively define this
function as follows:

�N(n)� def= �n�
�Neg(e1)� def= −�e1�

�Plus(e1, e2)� def= �e1�+�e2�
where we assume a corresponding function �n� that takes a Scala value
n of type Int to the corresponding mathematical integer. The − and +
operators above are over mathematical integers. We can now state and
prove the correctness of eval.

2.2. STRUCTURAL INDUCTION 37

THEOREM 2.3 (Correctness of eval). For all values e of type Expr,

eval(e) −→∗ x�e�y
PROOF. By structural induction on e.

BASE CASE (e = N(n) for some value n : Int). Taking a few steps of
evaluation, we have that

eval(e)= eval(N(n))

−→∗ n (by the definition of eval)

Note that x�N(n)�y= x�n�y= n, so this case is complete.

INDUCTIVE CASE (e = Neg(e1) for some value e1 : Expr). Taking a few
steps of evaluation, we have that

eval(e)= eval(Neg(e1))

−→∗ −eval(e1) (by the definition of eval)

By the i.h. on e1, we have that

eval(e1)−→∗ x�e1�y .

Thus, we have that

−eval(e1)−→∗ −x�e1�y
−→∗ x−�e1�y (by the definition of − in Scala)

Note that x�Neg(e1)�y= x−�e1�y, so this case is complete.

INDUCTIVE CASE (e = Plus(e1, e2) for some values e1 : Expr and e2 : Expr).
Taking a few steps of evaluation, we have that

eval(e)= eval(Plus(e1, e2))

−→∗ eval(e1)+eval(e1) (by the definition of eval)

By the i.h. on e1, we have that

eval(e1)−→∗ x�e1�y .

And by the i.h. on e2, we have that

eval(e2)−→∗ x�e2�y .

Thus, we have that

eval(e1)+eval(e1)−→∗ x�e1�y+x�e2�y
−→∗ x�e1�+�e2�y (by the definition of + in Scala)

Note that x�Plus(e1, e2)�y= x�e1�+�e2�y, so this case is complete.

�

38 2. APPROACHING A PROGRAMMING LANGUAGE

informal description set of syntactic objects grammar

natural numbers Nat n ::= z | s(n)

FIGURE 2.5. A language describing the natural numbers.

2.3. Judgments

A judgment is a statement about a set of objects. It asserts a relation
between a set of objects. The relation itself is often called a judgment
form. Judgments are used pervasively in describing programming lan-
guages.

We have previously seen judgment forms, for example, relating an ex-
pression and a type:

e : τ

that is read “expression e has type τ.” This relation takes two parameters:
an expression e and a type τ. The colon : is simply punctuation. For
readability, it is common for judgment forms to use a mix of punctuation
symbols. Parameters are typically written in italic font (e.g., e and τ).

Judgment forms are defined inductively using a set of inference rules.
An inference rule takes the following form:

J1 J2 · · · Jn

J

where the meta-variable J stands for a judgment. The judgments above
the horizontal line are the premises, while the judgment below the line is
the conclusion. An inference rule states that if the premises can be shown
to hold, then the conclusion also holds (i.e., the premises are sufficient to
derive the conclusion). The set of premises may be empty, and such an
inference rule is called an axiom.

2.3.1. Example: Syntax. Recall from section 2.1 that a grammar de-
fines inductively a set of syntactic objects. For example, we can describe
the natural numbers using a unary notation in Figure 2.5. We give an
explicit name Nat to the set of syntactic objects describing natural num-
bers.

We can also define the language of natural numbers using judgments
and inference rules. Let n ∈ Nat be the (unary) judgment that says, “Syn-
tactic object n is a natural number in set Nat.” We define this judgment
in Figure 2.6 with two inference rules ZERO and SUCCESSOR. Rule ZERO is
an axiom that says that z is in set Nat, while rule SUCCESSOR says that s(n)
is in set Nat if n is in Nat.

2.3. JUDGMENTS 39

n ∈ Nat
ZERO

z ∈ Nat

SUCCESSOR

n ∈ Nat.

s(n) ∈ Nat

FIGURE 2.6. Defining the language of natural numbers judgmentally.

n1 =Nat n2

ZERO-EQ

z=Nat z

SUCCESSOR-EQ

n1 =Nat n2

s(n1) =Nat s(n2)

FIGURE 2.7. Defining structural equality of natural numbers.

2.3.2. Derivations of Judgments. A set of inference rules defines a
judgment as the least relation closed under the rules. This statement
means a judgment holds if and only if we can compose applications of
the inference rules to demonstrate it. Such a demonstration is called a
derivation. A derivation is a tree where each node in the tree is an appli-
cation of an inference rule and whose children are derivations of the rule’s
premises. The leaves of a derivation tree are applications of axioms.

For example, to demonstrate that the judgment s(s(z)) ∈ Nat holds, we
give the following the derivation:

z ∈ Nat
ZERO

s(z) ∈ Nat
SUCCESSOR

s(s(z)) ∈ Nat
SUCCESSOR

.

We write the rule that is applied to the right of the horizontal line.

2.3.3. Structural Induction on Derivations. Judgments are induct-
ively-defined relations. They yield an induction principle based on the
structure of derivations. In particular, to show a property P (J) whenever
J holds, it suffices to consider each rule from which J may be derived:

J1 J2 · · · Jn

J

and show P (J) under the inductive hypotheses P (J1), P (J2), . . ., and P (Jn).

40 2. APPROACHING A PROGRAMMING LANGUAGE

To give an example of structural induction on derivations, let us first
explicitly define structural equality over our language of natural numbers
with the judgment form n1 =Nat n2 in Figure 2.7.

Now, let us prove that =Nat is reflexive.

If n ∈ Nat, then n =Nat n.

Note that this statement states that if the judgment n ∈ Nat holds, then
the judgment n =Nat n also holds. A judgment holds if and only if there is
a derivation that exhibits it, so more verbosely, the above is a shorthand
for the following:

For all n and all derivations D , if D is a derivation for
the judgment n ∈ Nat, then there is a derivation E for the
judgment n =Nat n.

To annotate a judgment with a derivation that exhibits it, we write D :: J
to mean D is a derivation that ends in judgment J .

THEOREM 2.4 (=Nat is a reflexive). If D :: n ∈ Nat, then n =Nat n.

PROOF. By structural induction on D .

CASE (D = z ∈ Nat
ZERO

). We create a derivation E to exhibit the judg-
ment z=Nat z by applying rule ZERO-EQ:

E = z=Nat z
ZERO-EQ

.

CASE (D =
D1 :: n′ ∈ Nat

s(n′) ∈ Nat
SUCCESSOR

). By the induction hypothesis on
D1, we have a derivation E1 that exhibits the judgment n′ =Nat n′. We cre-
ate a derivation E that exhibits the judgment s(n′) =Nat s(n′) by applying
rule SUCCESSOR-EQ as follows:

E =
E1 :: n′ =Nat n′

s(n′) =Nat s(n′)
SUCCESSOR-EQ

.

�

This theorem is rather obvious, but it highlights the structure of such
proofs. Here, we have been very explicit about the manipulation of deriva-
tions. Because the existence of a derivation coincides with a judgment
holding, derivations are sometimes left more implicit.

CHAPTER 3

Language Design and Implementation

3.1. Operational Semantics

In section 2.1, we began the discussion of language specification and
the importance specifying languages clearly, crisply, and precisely. Gram-
mars is the main tool by which the syntax of a language, that is, the pro-
grams that we can write are specified. In this section, we introduce a tool
for defining the semantics of a language, that is, the meaning of programs.

There are several ways to think about the meaning of programs. One
natural way is to think about how programs evaluate. An operational se-
mantics is a way to describe how programs evaluate in terms of the lan-
guage itself (rather than by compilation to a machine model). One way to
see an operational semantics is as describing an interpreter for the lan-
guage of interest.

3.1.1. Syntax: JavaScripty. We consider a small subset of JavaScript,
which we will affectionately call JAVASCRIPTY. The syntax of JAVASCRIPTY

is given in Figure 3.1. Recall that we interpret such a definition as the
abstract syntax of JAVASCRIPTY using elements from its concrete syntax.
That is, we write concrete syntax for readability but assume that we are
given abstract syntax trees that resolve ambiguity in the grammar.

expressions e ::= x | n | b | undefined | uope1 | e1 bop e2

| e1 ? e2 : e3 | const x = e1; e2 | console.log(e1)
values v ::= n | b | undefined
unary operators uop ::= - | !
binary operators bop ::= , | + | - | * | / | < | <= | > | >=

| === | !== | && | ||
variables x
numbers (doubles) n
booleans b ::= true | false

FIGURE 3.1. Syntax of JAVASCRIPTY

41

42 3. LANGUAGE DESIGN AND IMPLEMENTATION

Figure 3.1 describes JAVASCRIPTY using a number of syntactic cate-
gories. The main syntactic category is expressions. We consider a pro-
gram to be an expression. Expressions e consist of variables, value lit-
erals, unary operator expressions, binary operator expressions, a condi-
tional if-then-else expression, a variable binding expression, and a print
expression. Values v can be numbers (double-precision floating point),
booleans, and a unique undefined value. This set of essentially arith-
metic expressions is the usual core of any programming language. Func-
tions are notably missing.

3.1.2. A Big-Step Operational Semantics. We might guess the seman-
tics of particular expressions based on common conventions. For exam-
ple, we probably guess that expression

e1 + e2

adds two numbers that result from evaluating e1 and e2. However, note
that this statement is something about the semantics of e1 + e2, which
has yet to be specified.

One aspect that makes the JavaScript specification complex is the pres-
ence of implicit conversions (e.g., boolean values may be implicitly con-
verted to numeric values depending on the context in which values are
used). For example,

true + 2

evaluates to 3. How can we describe how to implement a JAVASCRIPTY

interpreter for all programs?
It is possible to specify the semantics of a programming language us-

ing natural language prose. However, just like with specifying syntax us-
ing natural language prose, it is very easy to leave ambiguity in the de-
scription. Furthermore, trying to minimize ambiguity can create very
verbose descriptions. The JavaScript specification, specifically ECMA-
262 standard [], is actually rather precise specification based on natural
language prose, but the descriptions are quite verbose.

In this section, we introduce some mathematical notation that en-
ables us to specify semantics with less ambiguity in a very compact form.
Like any mathematical notation, its precise and compact nature makes
it easier, for example, to spot errors or inconsistencies in specification.
However, there will necessarily be a learning curve to reading the nota-
tion.

We want to write out as unambiguously as possible how a program
should evaluate independent of an implementation (e.g., a compiler and

3.1. OPERATIONAL SEMANTICS 43

machine architecture). We use a method specification known as an oper-
ational semantics. An operational semantics can be thought as describ-
ing an interpreter for the language of interest with relations between syn-
tactic objects. We have already used a notation for describing an evalua-
tion relation:

e ⇓ v .

This notation is a judgment form stating informally, “Expression e eval-
uates to value v .” Defining this judgment describes how to evaluate ex-
pressions to values and thus corresponds closely to writing a recursive
interpreter of the abstract syntax trees representing expressions.

We will use a slight richer judgment form with an additional parame-
ter:

E ` e ⇓ v ,

which says informally, “In value environment E , expression e evaluates
to value v .” This relation has three parameters: E , e, and v . The other
parts of the judgment is simply punctuation that separates the parame-
ters. The ` symbol is called the “turnstile” symbol.

A value environment E is a finite map from variables x to values v and
can be described by the following grammar:

E ::= · | E [x 7→ v] .

We write · for the empty environment and E [x 7→ v] as the environment
that maps x to v but is otherwise the same as E (i.e., extends E with map-
ping x to v). Additionally, we write E(x) for looking up the value of x in
environment E . More precisely, we can define look up as follows:

E [y 7→ v](x)
def= v if y = x

E [y 7→ v](x)
def= E(x) otherwise

·(x) undefined .

The inference rules that define this evaluation judgment form is given
in Figure 3.2. Let us first consider the two axioms:

EVALVAR

E ` x ⇓ E(x)

EVALVAL

E ` v ⇓ v
.

The EVALVAR rule says that a variable use x evaluates to the value to which
it is bound in the environment E . Or operationally, to evaluate a variable
use x, look up the value corresponding to x in the environment E . For an
expression that is already a value v , it evaluates to itself as stated by the
EVALVAL rule.

Now, back to the original example in this section, we are trying to
specify how the expression

e1 + e2

44 3. LANGUAGE DESIGN AND IMPLEMENTATION

evaluates. Thinking operationally, we want to say something like: evalu-
ate e1 to a number, evaluate e2 to a number, and then return the number
that is the addition of those numbers. Consider the following inference
rule:

E ` e1 ⇓ n1 E ` e2 ⇓ n2 n′ = n1+n2

E ` e1 +e2 ⇓ n′

Reading top-down, this rule says if we know that in environment E , ex-
pression e1 evaluates to a number n1 and e2 evaluates to n2, then expres-
sion e1 + e2 evaluates to n′ in environment E where n′ is the addition
of the n1 and n2. Note that the + in the premise is “plus” in the meta
language (i.e., the implementation language) in contrast to the + in the
conclusion that is the syntactic symbol + in the object language (i.e., the
source language). Here, we have highlighted the meta-language “plus”
for clarity, but often, the reader is asked to determine this distinction
based on context. To be completely explicit, we could use an alternative
notation for the abstract syntax:

E ` e1 ⇓ n1 E ` e2 ⇓ n2 n′ = n1+n2

E ` Binary(Plus, e1, e2) ⇓ n′

This rule defines a semantics that does not fully match JavaScript be-
cause it requires e1 and e2 in e1 + e2 to evaluate to number values (i.e.,
n1 and n2). JavaScript permits other types of values and then performs a
conversion before performing the addition. We can express this seman-
tics using the following inference rule:

E ` e1 ⇓ v1 E ` e2 ⇓ v2 n′ = toNumber(v1)+ toNumber(v2)

E ` e1 +e2 ⇓ n′

Reading top-down, it says if we know that in environment E , expression
e1 evaluates to v1 and e2 evaluates to v2, then expression e1 + e2 evaluates
to n′ in environment E where n′ is the addition of the toNumber conver-
sions of v1 and v2. We define the toNumber conversion in Figure 3.3. This
rule specifies the semantics that we want, though it is not the only way to
do so.

Any evaluation rule can also be read bottom-up, which matches more
closely to an implementation. For example, the above rule says, “To eval-
uate e1 + e2 in environment E , evaluate e1 in environment E to get value
v1, evaluate e2 in environment E to get value v2, convert v1 and v2 to
numbers, and return the addition of those two numbers.”

In Figure 3.2, we lump all of the arithmetic operators +, −, ∗, and /
together in the same rule: EVALARITH. We use one notational shortcut

3.1. OPERATIONAL SEMANTICS 45

E ` e ⇓ v

EVALVAR

E ` x ⇓ E(x)

EVALVAL

E ` v ⇓ v

EVALNEG
E ` e1 ⇓ v1 n′ =− toNumber(v1)

E `−e1 ⇓ n′

EVALNOT
E ` e1 ⇓ v1 b′ =¬ toBoolean(v1)

E ` !e1 ⇓ b′

EVALSEQ
E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` e1 , e2 ⇓ v2

EVALARITH
E ` e1 ⇓ v1 E ` e2 ⇓ v2 n′ = toNumber(v1) bop toNumber(v2) bop ∈ {+,−,∗,/}

E ` e1 bop e2 ⇓ n′

EVALINEQUALITY
E ` e1 ⇓ v1 E ` e2 ⇓ v2 b′ = toNumber(v1) bop toNumber(v2) bop ∈ {<,<=,>,>=}

E ` e1 bop e2 ⇓ b′

EVALEQUALITY
E ` e1 ⇓ v1 E ` e2 ⇓ v2 b′ = (v1 bop v2) bop ∈ {===, ! ==}

E ` e1 bop e2 ⇓ b′

EVALANDTRUE
E ` e1 ⇓ v1 true = toBoolean(v1) E ` e2 ⇓ v2

E ` e1 && e2 ⇓ v2

EVALANDFALSE
E ` e1 ⇓ v1 false = toBoolean(v1)

E ` e1 && e2 ⇓ v1

EVALORTRUE
E ` e1 ⇓ v1 true = toBoolean(v1)

E ` e1 || e2 ⇓ v1

EVALORFALSE
E ` e1 ⇓ v1 false = toBoolean(v1) E ` e2 ⇓ v2

E ` e1 || e2 ⇓ v2

EVALPRINT
E ` e1 ⇓ v1 v1 printed

E ` console.log(e1) ⇓ undefined

EVALIFTRUE
E ` e1 ⇓ v1 true = toBoolean(v1) E ` e2 ⇓ v2

E ` e1 ? e2 : e3 ⇓ v2

EVALIFFALSE
E ` e1 ⇓ v1 false = toBoolean(v1) E ` e3 ⇓ v3

E ` e1 ? e2 : e3 ⇓ v3

EVALCONST
E ` e1 ⇓ v1 E [x 7→ v1] ` e2 ⇓ v2

E ` const x = e1; e2 ⇓ v2

FIGURE 3.2. Big-step operational semantics of JAVASCRIPTY.

by treating the bop as the corresponding meta-language operator in the
premise.

It is informative to study the complete set of inference rules and think
about how the rules correspond to implementing an interpreter. The
EVALCONST rule is particularly interesting because we see explicitly that

const x = e1; e2

the scope of variable x is the expression e2 because e2 is evaluated in an
extended environment with a binding for x.

46 3. LANGUAGE DESIGN AND IMPLEMENTATION

toNumber(n)
def= n

toNumber(true)
def= 1

toNumber(false)
def= 0

toNumber(undefined)
def= NaN

toBoolean(n)
def= false if n = 0 or n =NaN

toBoolean(n)
def= true otherwise

toBoolean(b)
def= b

toBoolean(undefined)
def= false

FIGURE 3.3. JAVASCRIPTY conversion functions.

3.2. Small-Step Operational Semantics

3.2.1. Evaluation Order. In subsection 3.1.2, we have carefully spec-
ified several aspects of how the expression

e1 + e2

should be evaluated. In essence, it adds two integers that result from
evaluating e1 and e2. However, there is still at least one more semantic
question that we have not specified, “Is e1 evaluated first and then e2 or
vice versa, or are they evaluated concurrently?”

Why does this question matter? Consider the expression:

(3.2.1.1) (jsy.print(1), 1) + (jsy.print(2), 2) .

The , operator is a sequencing operator. In particular, e1 , e2 first evalu-
ates e1 to a value and then evaluates e2 to value; the value of the whole
expression is the value of e2, while the value of e1 is simply thrown away.
Furthermore, console.log(e1) evaluates its argument to a value and then
prints to the screen a representation of that value. If the left operand of
a + is evaluated first before the right operand, then the above expression
(3.2.1.1) prints 1 and then 2. If the operands of + are evaluated in the op-
posite order, then 2 is printed first followed by 1. Note that the final value
is 3 regardless of the evaluation order.

The evaluation order matters because the console.log(e1) expression
has a side effect. It prints to the screen. As alluded to in section 1.2, an ex-
pression free of side effects (i.e., is pure) has the advantage that the eval-
uation order cannot be observed (i.e., does not matter from the program-
mer’s perspective). Having this property is also known as being referen-
tially transparent, that is, taking an expression and replacing any of its
subexpressions by the subexpression’s value cannot be observed as eval-
uating any differently than evaluating the expression itself. In JAVASCRIPTY,
our only side-effecting expression is console.log(e1). If we remove the

3.2. SMALL-STEP OPERATIONAL SEMANTICS 47

prints from the above expression (3.2.1.1), then the evaluation order can-
not be observed.

3.2.2. A Small-Step Operational Semantics of JAVASCRIPTY. The big-
step operational semantics given in subsection 3.1.2 does give us a nice
specification for implementing an interpreter, but it does leave some se-
mantic choices like evaluation order implicit. Intuitively, it specifies what
the value of an expression should be (if it exists) but not precisely the
steps to get to the value.

We have already used a notation for describing a one-step evaluation
relation:

e −→ e ′ .

This notation is a judgment form stating informally, “Expression e can
take one step of evaluation to expression e ′.” Defining this judgment al-
lows us to more precisely state how to take one step of evaluation, that
is, how to make a single reduction step. Once we know how to reduce
expressions, we can evaluate an expression e by repeatedly applying re-
duction until reaching a value. Thus, such a definition describes an op-
erational semantics and intuitively an interpreter for expressions e. This
style of operational semantics where we specify reduction steps is called
a small-step operational semantics.

In contrast to subsection 3.1.2, we will not extend this judgment form
with value environments. Instead, we define the one-step reduction rela-
tion on closed expressions, that is, expressions without any free variables.
If we require the “top-level” program to be a closed expression, then we
can ensure reduction only sees closed expressions by intuitively “apply-
ing the environment” eagerly via substitution. That is, variable uses are
replaced by the values to which they are bound before reduction gets to
them. As an example, we will define reduction so that the following judg-
ment holds:

const x = 1; x + x −→ 1 + 1 .

This choice to use substitution instead of explicit environments is or-
thogonal to specifying the semantics using small-step or big-step (i.e.,
one could use subsitution with big-step or environments with small-step).
Explicit environments just get a bit more unwieldy here.

First, we need to describe what action does an operation perform. For
example, we want to say that the + operator adds two numbers, which we
say with the following rule:

DOPLUS

n′ = toNumber(v1)+ toNumber(v2)

v1 + v2 −→ n′

48 3. LANGUAGE DESIGN AND IMPLEMENTATION

This rules says the expression v1 + v2 reduces in one step to an integer
value n′ that is the addition of the toNumber conversion of values v1 and
v2. We use the meta-variables v1, v2, and n′ to express constraints that
particular positions in the expressions must be values or numeric values.
Note that the + in the conclusion is the syntactic + operator, while the +
in the premise expresses mathematical addition of two numbers. As we
discussed in subsection 3.1.2, this symbol clash is rather unfortunate, but
context usually allows us to determine which + is which. We sometimes
call this kind of rule that performs an operation a local reduction rule. We
will prefix all rules for this kind of rule with DO (and so will sometimes
call them DO rules).

Second, we need to describe how we find the next operation to per-
form. These rules will capture issues like evaluation order described in-
formally in subsection 3.2.1. To specify that e1 + e2 should be evaluated
left-to-right, we use the following two rules:

SEARCHPLUS1

e1 −→ e ′
1

e1 + e2 −→ e ′
1 + e2

SEARCHPLUS2

e2 −→ e ′
2

v1 + e2 −→ v1 + e ′
2

The SEARCHPLUS1 rule states for an arbitrary expression of the form e1 +
e2, if e1 steps to e ′

1, then the whole expression steps to e ′
1 + e2. We can

view this rule as saying that we should look for an operation to perform
somewhere in e1. The rest of the expression • + e2 is a context that gets
carried over untouched. The SEARCHPLUS2 rule is similar except that it
applies only if the left expression is a value (i.e., v1 + e2). Together, these
rules capture precisely a left-to-right evaluation order for an expression
of the form e1 + e2 because (1) if e1 is not a value, then only SEARCHPLUS1

could possibly apply, and (2) if e1 is a value, then only SEARCHPLUS2 could
possibly apply. We sometimes call this kind of rule that finds the next
operation to perform a global reduction rule (or a SEARCH rule). The sub-
expression that is the next operation to perform is called the redex.

Considering these three rules, there is at most one rule that applies
that specifies the “next” step. If our set of inference rules defining reduc-
tion has this property, then we say that our reduction system is determin-
istic. In other words, there is always at most one “next” step. Determin-
ism is a property that we could prove about certain reduction systems,
which we can state formally as follows:

PROPERTY 3.1 (Determinism). If e −→ e ′ and e −→ e ′′, then e ′ = e ′′.

In general, such a proof would proceed by structural induction on the
derivation of the reduction step (i.e., e −→ e ′). We do not yet such proofs
here in detail (cf., subsection 2.3.3).

3.2. SMALL-STEP OPERATIONAL SEMANTICS 49

e −→ e ′

DONEG
n′ =− toNumber(v)

−v −→ n′

DONOT
b′ =¬ toBoolean(v)

! v −→ b′
DOSEQ

v1 , e2 −→ e2

DOARITH
n′ = toNumber(v1) bop toNumber(v2) bop ∈ {+,−,∗,/}

v1 bop v2 −→ n′

DOINEQUALITY
b′ = toNumber(v1) bop toNumber(v2) bop ∈ {<,<=,>,>=}

v1 bop v2 −→ b′

DOEQUALITY
b′ = (v1 bop v2) bop ∈ {===, ! ==}

v1 bop v2 −→ b′

DOANDTRUE
true = toBoolean(v1)

v1 && e2 −→ e2

DOANDFALSE
false = toBoolean(v1)

v1 && e2 −→ false

DOORTRUE
true = toBoolean(v1)

v1 || e2 −→ true

DOORFALSE
false = toBoolean(v1)

v1 || e2 −→ e2

DOPRINT
v1 printed

console.log(v1) −→ undefined

DOIFTRUE
true = toBoolean(v1)

v1 ? e2 : e3 −→ e2

DOIFFALSE
false = toBoolean(v1)

v1 ? e2 : e3 −→ e3

DOCONST

const x = v1; e2 −→ e2[v1/x]

SEARCHUNARY
e1 −→ e′1

uope1 −→ uope′1

SEARCHBINARY1
e1 −→ e′1

e1 bop e2 −→ e′1 bop e2

SEARCHBINARY2
e2 −→ e′2

v1 bop e2 −→ v1 bop e′2

SEARCHPRINT
e1 −→ e′1

console.log(e1) −→ console.log(e′1)

SEARCHIF
e1 −→ e′1

e1 ? e2 : e3 −→ e′1 ? e2 : e3

SEARCHCONST
e1 −→ e′1

const x = e1; e2 −→ const x = e′1; e2

FIGURE 3.4. Small-step operational semantics of JAVASCRIPTY.

In Figure 3.4, we give all of the inference rules that define the one-
step evaluation relation e −→ e ′ for JAVASCRIPTY. The DONEG states that
the unary operator − is integer negation, while DONOT states that ! is
boolean negation. Observe that to “do” the operation, we require that the
sub-expression under the unary operators − or !, respectively, is a value.
Contrast these rules to EVALNEG and EVALNOT in Figure 3.2. If the sub-
expression under the unary operator is not a value, then instead the rule
SEARCHUNARY applies telling us to look for something to reduce inside
this sub-expression. The DOSEQ rules states that the ‘,’ operator is used

50 3. LANGUAGE DESIGN AND IMPLEMENTATION

to indicate sequencing: for e1 , e2, first e1 is evaluated to a value, then
that value is ignored, and we continue by evaluating e2. The DOARITH,
DOINEQUALITY, and DOEQUALITY specify how the arithmetic, inequality,
and equality operators behave, respectively. The DOARITH includes the
case for + that we separated out in our discussion above.

We say that a short-circuit evaluation of expression is one where a
value is produced before evaluating all subexpressions to values. The
next four rules DOANDTRUE, DOANDFALSE, DOORTRUE, and DOORFALSE say
that the boolean expressions e1 && e2 and e1 || e2 may short-circuit. In
particular, the rule

DOANDFALSE

false = toBoolean(v1)

v1 && e2 −→ false

says that v1 && e2 where v1 converts to false evaluates to false without
ever evaluating e2. The analogous rule for || is

DOORTRUE

true = toBoolean(v1)

v1 || e2 −→ true

The DOPRINT rule

DOPRINT

v1 printed

console.log(v1) −→ undefined

is somewhat informal. In particular, since printing is outside of our model,
the“v1 printed” in the premise of the rule is not any required condition
but should be viewed as comment for when this rule is applied. What is
stated is the result of a print is the value undefined.

For e1 ? e2 : e3, the rules DOIFTRUE and DOIFFALSE specify with which
expression to continue evaluation in the expected way depending on what
Boolean value to which the guard converts.

The DOCONST rule for the variable binding expression const x = e1; e2

DOCONST

const x = v1; e2 −→ e2[v1/x]

is a bit more interesting. The expression-to-be-bound should already be
a value v1. We then proceed with e2 with the value v1 replacing the vari-
able x. In general, the notation e1[e2/x] is read as capture-avoiding sub-
stitution of expression e2 for variable x in e1. We describe substitution in
more detail below in subsubsection 3.2.2.1.

3.2. SMALL-STEP OPERATIONAL SEMANTICS 51

The remaining rules in Figure 3.4 describe how to find the next op-
eration to perform (i.e., the global reduction rules). They specify that all
expressions are evaluated left-to-right.

3.2.2.1. Substitution. The term capture-avoiding subsitution means
that we get the expression that is like e1, but we have replaced all in-
stances of variable x with e2 while carefully respecting static scoping (cf.,
subsection 1.2.4). There are two thorny issues that arise.

Shadowing: The substitution

(const a = 1; a + b)︸ ︷︷ ︸
e1

[2︸︷︷︸
e2

/ a︸︷︷︸
x

]

should yield (const a = 1; a + b). That is, only free instances
of a in e1 should be replaced.

Free Variable Capture: The substutition

(const a = 1; a + b)︸ ︷︷ ︸
e1

[(a + 2)︸ ︷︷ ︸
e2

/ b︸︷︷︸
x

]

should yield something like (const c = 1; c + (a + 2)). In
particular, the following result is wrong:

(const a = 1; a + (a + 2))

because the free variable a in e2 gets “captured” by the const
binding of a.

In both cases, the issues could be resolved by renaming all bound vari-
ables in e1 so that there are no name conflicts with free variables in e2 or
x. In other words, it is clear what to do if e1 were instead

const c = 1; c + b

in which case textual substitution would suffice.
The observation is that renaming bound variables should preserve

the meaning of the expression, that is, the following two expressions are
somehow equivalent:

(const a = 1; a) ≡α (const b = 1; b)

For historical reasons, this equivalence is known α-equivalence, and the
process of renaming bound variables is called α-renaming. This obser-
vation also leads to coming up with an abstract syntax representation so
that the above two expressions are represented with the same object. As
an aside, one way to do this is to use variables in the meta language to
represent variables in the object langauge. This idea is known as higher-
order abstract syntax.

In DOCONST, our situation is slight more restricted than the general
case discussed above. In particular, the substitution is of the form e[v/x]

52 3. LANGUAGE DESIGN AND IMPLEMENTATION

e[e ′/x] = e ′′

x1[e ′/x]
def= e ′ if x = x1

x1[e ′/x]
def= x1 if x 6= x1

(const x1 = e1; e2)[e ′/x]
def= const x1 = (e1[e ′/x]); e2 if x = x1

(const x1 = e1; e2)[e ′/x]
def= const x1 = (e1[e ′/x]); (e2[e ′/x]) if x 6= x1

n[e ′/x]
def= n

b[e ′/x]
def= b

undefined[e ′/x]
def= undefined

(uope1)[e ′/x]
def= uop (e1[e ′/x])

(e1 bop e2)[e ′/x]
def= (e1[e ′/x]) bop (e2[e ′/x])

(e1 ? e2 : e3)[e ′/x]
def= (e1[e ′/x]) ? (e2[e ′/x]) : (e3[e ′/x])

(console.log(e1))[e ′/x]
def= console.log(e1[e ′/x])

FIGURE 3.5. Defining substitution assuming e and e ′ use
disjoint sets of bound variables

where the replacement for x has to be value. Values have no free vari-
ables, so only the shadowing issue arises.

In Figure 3.5, we define substitution e[e ′/x] by induction over the
structure of expression e. As a pre-condition, we assume that e and e ′ use
disjoint sets of bound variables. This pre-condition can always be satis-
fied by renaming bound variables appropriate as described above. Or if
we require that e ′ has to be value, then this pre-condition is trivally satis-
fied. The most interesting cases are for variable uses and const bindings.
For variable uses, we yield e ′ if the variable matches the variable being
substituted for; otherwise, we leave the variable use unchanged. For a
binding const x1 = e1; e2, we recall that the scope of x1 is e2, so we substi-
tute in e2 depending on whether x1 is x. The remaining expression forms
simply “pass through” the substitution.

3.2.2.2. Multi-Step Evaluation. We have now defined how to take one-
step of evaluation. The multi-step evaluation judgment

e −→∗ e ′

says, “Expression e can step to expression e ′ in zero-or-more steps.” This
judgment is defined using the following two rules:

e −→∗ e ′

ZEROSTEPS

e −→∗ e

ATLEASTONESTEP

e −→ e ′ e ′ −→∗ e ′′

e −→∗ e ′′

3.2. SMALL-STEP OPERATIONAL SEMANTICS 53

In other words, −→∗ is the reflexive-transitive closure of −→.
A property that we want is that our big-step semantics and our small-

step semantics are “the same.” We can state this property formally as
follows.

PROPERTY 3.2 (Big-Step and Small-Step Equivalence). · ` e ⇓ v if and
only if e −→∗ v.

CHAPTER 4

Static Checking

4.1. Type Checking

In section 3.2, we defined a one-step reduction relation such that for
any closed expression e: either e is a value or e −→ e ′ for some e ′, that is,
e can take a step to e ′. This property is very nice but it came at a cost in
complexity: we defined conversions between all types of values.

However, with a complex enough language, some types of values sim-
ply do not have sensible conversions. For example, let us consider ex-
tending JAVASCRIPTY with function values. How should the number 3

convert to a function value?
In Figure 4.1, we extend JAVASCRIPTY with first-class functions. The

language of expressions are extended with function expressions

(x) => e1 ,

which we consider shorthand for the following concrete syntax:

function (x) { return e1 }

in JavaScript. For simplicity, we restrict functions to be anonymous and
with exactly one argument. Function calls are written as e1(e2). The lan-
guage of values are also extend with function expressions, that is, func-
tion expressions are themselves considered values.

4.1.1. Getting Stuck. In Figure 4.2, we give additional rules for eval-
uating function calls. Observe in the DOCALL rule that an evaluation step
only makes sense if we are calling a function value. Otherwise, the set of
rules simply say that call expressions are evaluated left-to-right and that
both the function and the argument expressions must be values before
continuing to evaluating with the body of the function. This latter choice
is known as call-by-value semantics; we will return to this notion in ??.

expressions e ::= ·· · | (x) => e1 | e1(e2)
values v ::= ·· · | (x) => e1

FIGURE 4.1. Syntax of JAVASCRIPTY with first-class functions.

55

56 4. STATIC CHECKING

DOCALL

((x) => e1)(v2) −→ e1[v2/x]

SEARCHCALL1

e1 −→ e ′
1

e1(e2) −→ e ′
1(e2)

SEARCHCALL2

e2 −→ e ′
2(

(x) => e1
)
(e2) −→ (

(x) => e1
)
(e ′

2)

FIGURE 4.2. Small-step operational semantics of
JAVASCRIPTY with first-class functions (extends Figure 3.4).

TYPEERRORCALL

v1 6= p(x) => e1

v1(e2) −→ typeerror

PROPAGATECALL1

typeerror(e2) −→ typeerror

PROPAGATECALL2

v1(typeerror) −→ typeerror

Other PROPAGATE rules for other expression
forms not shown.

FIGURE 4.3. Extending the small-step semantics of
JAVASCRIPTY from Figure 4.2 with dynamic type errors.

Note that these rules do not say anything about how to evaluate an
ill-typed expression, such as

3(4) .

Intuitively, evaluating this expression should result in an error. We do not
state this error explicitly. Rather, we see that this an expression that is (1)
not value and (2) can make no further progress (i.e., there’s no rule that
specifies a next expression). We call such an expression a stuck expres-
sion, which captures the idea that it is erroneous in some way.

4.1.2. Dynamic Typing. Another formalization and implementation
choice would be to make such ill-typed expressions step to an error to-
ken. For example, we add to the expression language a token typeerror
representing a dynamic type error:

expressions e ::= ·· · | typeerror
An ill-typed function call now steps to typeerror with rule TYPEERRORCALL.
We also need to extend rules for evaluating other all other expression

4.1. TYPE CHECKING 57

expressions e ::= ·· · | (x : τ) => e1

values v ::= ·· · | (x : τ) => e1

types τ ::= number | bool | Undefined | (x : τ) ⇒ τ′

type environments Γ ::= · | Γ[x 7→ τ]

FIGURE 4.4. Restricting JAVASCRIPTY with static typing.

forms that propagate the typeerror token if one is encountered in search-
ing for a redex. We show PROPAGATECALL1 and PROPAGATECALL2, which
are two such rules, that correspond to SEARCHCALL1 and SEARCHCALL2, re-
spectively.

With this instrumentation, we distinguish a dynamic type error for
any other reason for getting stuck. For example, an expression with free
variables, such as

x .

Recall that our one-step evaluation relation is intended for closed expres-
sions, so we might view this an internal error of the interpreter imple-
mentation rather than an error in the input JAVASCRIPTY program.

4.1.3. Static Typing. In subsection 4.1.1, we saw how “bad” expres-
sions, such as,

3(4)

are erroneous according to our operational semantics in that they “get
stuck.” This expression gets stuck because a call expression e1(e2) only
applicable to function values. We say that such an expression 3(4) is ill-
typed or not well-typed.

A type is a classification of values that characterize the valid opera-
tions for these values. A type system consists of a language of types and
a typing judgment that defines when an expression has a particular type.
When we say that an expression e has a type τ, we mean that if e evaluates
to a value, then that value should be of type τ. In this way, a type system
predicts some property about how an expression evaluates at run-time.

In Figure 4.4, we show a language of types τ for JAVASCRIPTY that in-
cludes base types for numbers n : number, Booleans b : bool, and the
undefined value undefined : Undefined, as well as a constructed type for
function values. A function type (x : τ) ⇒ τ′ classifies function values
whose return value has type τ′ assuming its called with an argument of
type τ. Our expression language e has modified slightly to add type an-
notations to function parameters.

A typing judgment form is defined by a set of typing rules that is the
first step towards defining a type checking algorithm. A type error is an

58 4. STATIC CHECKING

expression that violates the prescribed typing rules (i.e., may produce a
value outside the set of values that it is supposed to have). We define a
typing judgment form inductively on the syntactic structure of program
objects (e.g., expressions).

Recall from our earlier discussion on binding (subsection 1.2.3) that
the type of an expression with free variable depends on an environment.
In other words, consider the expression

x + 1 .

Is this expression well-typed? It depends. If in the environment, x is
stated to type Int, then it is well-typed; otherwise, it is not. We see that
the type of an expression e depends on a type environment Γ that gives
the types of the free variables of e. Thus, our typing judgment form is as
follows:

Γ` e : τ

that says informally, “In typing environment Γ, expression e has type
τ.” Observe how similar this judgment form is to our big-step evalua-
tion judgment form from subsection 3.1.2. This observation is a bit more
than a coincidence. A standard type checker works by inferring the type
of an expression by recursively inferring the type of each sub-expression.
A big-step interpreter computes the value of an expression by recursively
computing the value of each sub-expression. In essence, we can view a
type checker as an abstract evaluator over a type abstraction of concrete
values.

In Figure 4.5, we define typing of JAVASCRIPTY. The first four rules
TYPENUMBER, TYPEBOOL, TYPEUNDEFINED, and TYPEFUNCTION describe the
types of values. The types of the primitive values n, b, and undefined are
as expected. The TYPEFUNCTION is more interesting:

TYPEFUNCTION

Γ[x 7→ τ] ` e : τ′

Γ` (x : τ) => e : (x : τ) ⇒ τ′

A function value has a function type (x : τ) ⇒ τ′ (also sometimes called
simply an “arrow” type) whose parameter type is τ and return type is τ′.
The return type τ′ is obtained by inferring the type of the body expression
e under the extended environment Γ[x 7→ τ].

Examining the typing rules for the unary operators, we see that we
have decided to restrict the input programs beyond those that get stuck
with the small-step semantics defined in Figure 4.2:

TYPENEG

Γ` e1 : number

Γ`−e1 : number

TYPENOT

Γ` e1 : bool

Γ` !e1 : bool

4.1. TYPE CHECKING 59

Γ` e : τ

TYPENUMBER

Γ` n : number

TYPEBOOL

Γ` b : bool

TYPEUNDEFINED

Γ` undefined : Undefined

TYPEFUNCTION
Γ[x 7→ τ] ` e : τ′

Γ` (x : τ) => e : (x : τ) ⇒ τ′
TYPEVAR

Γ` x : Γ(x)

TYPENEG
Γ` e1 : number

Γ`−e1 : number

TYPENOT
Γ` e1 : bool

Γ` !e1 : bool

TYPESEQ

Γ` e1 : τ1 Γ` e2 : τ2

Γ` e1 , e2 : τ2

TYPEARITH
Γ` e1 : number Γ` e2 : number bop ∈ {+,−,∗,/}

Γ` e1 bop e2 : number

TYPEINEQUALITY

Γ` e1 : number Γ` e2 : number bop ∈ {<,<=,>,>=}

Γ` e1 bop e2 : bool

TYPEEQUALITY

Γ` e1 : τ Γ` e2 : τ τ has no function types bop ∈ {===, ! ==}

Γ` e1 bop e2 : bool

TYPEANDOR
Γ` e1 : bool Γ` e2 : bool bop ∈ {&&, ||}

Γ` e1 bop e2 : bool

TYPEPRINT
Γ` e1 : τ1

Γ` console.log(e1) : Undefined

TYPEIF
Γ` e1 : bool Γ` e2 : τ Γ` e3 : τ

Γ` e1 ? e2 : e3 : τ

TYPECONST
Γ` e1 : τ1 Γ[x 7→ τ1] ` e2 : τ2

Γ` const x = e1; e2 : τ2

TYPECALL
Γ` e1 : (x : τ) ⇒ τ′ Γ` e2 : τ

Γ` e1(e2) : τ′

FIGURE 4.5. Typing of JAVASCRIPTY.

For example, with rule TYPENEG, we say that −e1 is well-typed if e1 has
type number. Furthermore, this rule is the only rule for −e1, so we are
only permitting unary negation − of numbers. Similarly, we are only per-
mit not ! applied to booleans. Thus, only code that does not need conver-
sions is well typed. Therefore, we can simplify our interpreter to get rid

60 4. STATIC CHECKING

of conversions if only allow executing well-typed programs. We continue
with this design choice in this set of rules.

In the sequencing rule TYPESEQ

TYPESEQ

Γ` e1 : τ1 Γ` e2 : τ2

Γ` e1 , e2 : τ2
,

the type of the sequencing expression is τ2. The type of e1 is checked but
then dropped—all we care about is that e1 is well typed. Even though
we are dropping the type, the expression still needs to be type checked
because e1 should evaluate to a value (without getting stuck) before being
dropped and continuing with the evaluation e2.

The rule for conditionals TYPEIF

TYPEIF

Γ` e1 : bool Γ` e2 : τ Γ` e3 : τ

Γ` e1 ? e2 : e3 : τ

looks a bit different than DOIFTRUE and DOIFFALSE, the corresponding
big-step evaluation rules. In evaluation, we evaluate the guard expression
e1 and continue with either e2 or e3 depending on whether e1 evaluates
to true or false. In type checking, we are predicting the type of values
that arise during execution before executing the program. This phase
is known as static-time or compile-time as opposed to dynamic-time or
run-time during execution.

In a sufficiently complex language (i.e., a Turing-complete language),
it is undecidable to precisely determine the value of an expression be-
fore executing it (i.e., statically), so we must approximate. Here, we re-
quire that both branches e2 and e3 have the same type τ because we
do not know whether e1 will be true or false at run-time. This over-
approximation throws out some programs that would not get stuck at
run-time as a trade-off for being able to guarantee that well-typed pro-
grams do not get stuck. Over-approximation also happens in TYPECALL.

This over-approximation requirement is the fundamental trade-off
between static and dynamic typing.

Bibliography

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[2] C. A. R. Hoare. Null references: The billion dollar mistake. In QCon
London, 2009. URL http://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.
Presentation.

[3] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima, 2008. ISBN 9780981531601. URL http://books.google.
com/books?id=MFjNhTjeQKkC.

61

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://books.google.com/books?id=MFjNhTjeQKkC
http://books.google.com/books?id=MFjNhTjeQKkC

	Chapter 1. Introduction and Preliminaries
	1.1. Getting Your Money's Worth
	1.1.1. How?

	1.2. Is a Program Executed or Evaluated?
	1.2.1. Basic Values, Types, and Expressions
	1.2.2. Evaluation
	1.2.3. Binding Names
	1.2.4. Scoping
	1.2.5. Function Definitions and Tuples

	1.3. Recursion, Induction, and Iteration
	1.3.1. Induction: Reasoning about Recursive Programs
	1.3.2. Pattern Matching
	1.3.3. Function Preconditions
	1.3.4. Iteration: Tail Recursion with an Accumulator

	1.4. Lab 1
	1.4.1. Scala Basics: Binding and Scope
	1.4.2. Scala Basics: Typing
	1.4.3. Run-Time Library
	1.4.4. Run-Time Library: Recursion
	1.4.5. Data Structures Review: Binary Search Trees
	1.4.6. JavaScripty Interpreter: Numbers

	Chapter 2. Approaching a Programming Language
	2.1. Syntax: Grammars and Scoping
	2.1.1. Context-Free Languages and Context-Free Grammars
	2.1.1.1. Derivation of a Sentence in a Grammar.

	2.1.2. Lexical and Syntactic
	2.1.3. Ambiguous Grammars
	2.1.4. Abstract Syntax

	2.2. Structural Induction
	2.2.1. Structural Induction over Lists
	2.2.2. Structural Induction over Abstract Syntax Trees

	2.3. Judgments
	2.3.1. Example: Syntax
	2.3.2. Derivations of Judgments
	2.3.3. Structural Induction on Derivations

	Chapter 3. Language Design and Implementation
	3.1. Operational Semantics
	3.1.1. Syntax: JavaScripty
	3.1.2. A Big-Step Operational Semantics

	3.2. Small-Step Operational Semantics
	3.2.1. Evaluation Order
	3.2.2. A Small-Step Operational Semantics of Javascripty
	3.2.2.1. Substitution
	3.2.2.2. Multi-Step Evaluation

	Chapter 4. Static Checking
	4.1. Type Checking
	4.1.1. Getting Stuck
	4.1.2. Dynamic Typing
	4.1.3. Static Typing

	Bibliography

